Function question with expression

  • Thread starter Icebreaker
  • Start date
  • #1
Icebreaker

Main Question or Discussion Point

[tex]f(x)=\sqrt{2x}[/tex]

[tex]x(f)=\sqrt{2f}[/tex]

Does this express:

[tex]\sqrt{2\sqrt{2\sqrt{...}}}[/tex]
 

Answers and Replies

  • #2
HallsofIvy
Science Advisor
Homework Helper
41,738
899
It doesn't express anything because you are using the same symbol, "x", to represent two different things. If [tex]f(x)= \sqrt{2x}[/tex], the x(f) could only mean the inverse function which is [tex]x(f) = \frac{f^2}{2}[/tex]

IF you had said [tex]f(x)= \sqrt{2x}[/tex] and
y(f)= [tex]\sqrt{2}[/tex], then you could say
y(x)= [tex]\sqrt{2\sqrt{2x}}[/tex].
 
Last edited by a moderator:
  • #3
James R
Science Advisor
Homework Helper
Gold Member
600
15
If you have

[tex]f(x) = \sqrt{x}[/tex]

then

[tex]f(f(x)) = \sqrt{\sqrt{x}}[/tex],

and

[tex]f(f(f(x))) = \sqrt{\sqrt{\sqrt{x}}}[/tex]

etc.

Considering the function f as an operator, we can write the last expression above as, for example:

[tex]f^3 x = \sqrt{\sqrt{\sqrt{x}}}[/tex]

and, in general,

[tex]f^n = \sqrt{\sqrt{...}}[/tex]

where there are n square root signs.
 
  • #4
1,349
2
perhaps he implied x(f) in the first equation
 
  • #5
Icebreaker
Wait, is it possible to have "x" in "f(x)" or "f" in "x(f)" to be the function instead of the variable? So the infinite fraction described in the first post can be written the same way?
 
Last edited by a moderator:
  • #6
Curious3141
Homework Helper
2,830
86
Consider the function

[tex]f(x) = \sqrt{2x}[/tex] defined on the non-negative reals.

Then,

[tex]f_2(x) = \sqrt{2{\sqrt{2x}}[/tex]

(The reason I'm using the subscript rather than the exponent notation will become clear soon).

Then the nested square root thing can be defined by the recursion

[tex]f_1(x) = \sqrt{2x}[/tex]

[tex]f_{n+1}^2(x) = 2f_n(x)[/tex] ---(eqn 1)

where the exponent of 2 on the LHS signifies squaring.

The infinitely nested square root thing can be represented by

[tex]\sqrt{2\sqrt{2\sqrt{...}}} = \lim_{n \rightarrow \infty} f_n(x)[/tex]

At the limit, [tex]f_{n+1}(x) = f_n(x)[/tex]

so using the recursion in eqn 1,

[tex]f_n^2(x) = 2f_n(x)[/tex]

[tex]f_n(x)[f_n(x) - 2] = 0[/tex]

giving a trivial solution of [tex]f_n(x) = 0[/tex] for [tex]x = 0[/tex]

and a nontrivial solution [tex]f_n(x) = 2[/tex] for [tex]x > 0[/tex]

So [tex]\lim_{n \rightarrow \infty} f_n(x) = \sqrt{2\sqrt{2\sqrt{...}}} = 2[/tex] for [tex]x > 0[/tex]

For interest's sake, note that the actual value that you set for [itex]x[/itex] doesn't matter (as long as it's positive). The limit always converges to 2. The choice of value for [itex]x[/itex] only decides from which direction the nested functions converge to that limit. For [itex]x < 2[/itex], it's from the left, and for [itex]x > 2[/itex], it's from the right. For [itex]x = 2[/itex], convergence is immediate.
 
Last edited:
  • #7
Icebreaker
Interesting. Thanks everyone.
 
  • #8
dextercioby
Science Advisor
Homework Helper
Insights Author
12,965
536
It's not true.The value DOES matter

[tex] \sqrt{2\sqrt{2\sqrt{2\sqrt{...}}}}=2 [/tex]

[tex] \sqrt{3\sqrt{3\sqrt{3\sqrt{...}}}}=3 [/tex]

Generally

[tex] \sqrt{k\sqrt{k\sqrt{k\sqrt{...}}}}=k ,k\geq 0[/tex]

Daniel.
 
  • #9
Curious3141
Homework Helper
2,830
86
dextercioby said:
It's not true.The value DOES matter

[tex] \sqrt{2\sqrt{2\sqrt{2\sqrt{...}}}}=2 [/tex]

[tex] \sqrt{3\sqrt{3\sqrt{3\sqrt{...}}}}=3 [/tex]

Generally

[tex] \sqrt{k\sqrt{k\sqrt{k\sqrt{...}}}}=k ,k\geq 0[/tex]

Daniel.
Refresh yourself on how I defined the function. I took some care with that.
 
  • #10
dextercioby
Science Advisor
Homework Helper
Insights Author
12,965
536
Okay,got it.You defined a sequence of functions.I don't see the relevance of "x",though.

[tex] f_{n}\left(k\right)=:\substack{\underbrace{\sqrt{k\sqrt{k\sqrt{...\sqrt{k}}}}}\\ \mbox{n times}} [/tex]

I thought that was your function for k=2.

Daniel.
 
  • #11
Curious3141
Homework Helper
2,830
86
dextercioby said:
Okay,got it.You defined a sequence of functions.I don't see the relevance of "x",though.

[tex] f_{n}\left(k\right)=:\substack{\underbrace{\sqrt{k\sqrt{k\sqrt{...\sqrt{k}}}}}\\ \mbox{n times}} [/tex]

I thought that was your function for k=2.

Daniel.
The 'x' was to prove a point about how the limit is independent of the initial choice for x. And to illustrate that with the right choice of x (in this case, 2), you get immediate convergence to the same limit.

In your definition, I could say [tex]f(x) = \sqrt{kx}[/tex] and the limit is k. Immediate convergence occurs when x = k.

It's just a minor point I wanted to illustrate.
:wink:
 

Related Threads for: Function question with expression

Replies
5
Views
609
  • Last Post
Replies
3
Views
1K
Replies
5
Views
5K
Replies
11
Views
2K
Replies
2
Views
1K
  • Last Post
Replies
19
Views
3K
Replies
5
Views
518
Top