Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

MATLAB Functions close to zero in MATLAB

  1. Nov 8, 2012 #1
    Hi all,

    I need to find where a collection of curves are all approximately equal to zero (given some tolerance level) and was wondering if anyone could help me?

    I'm running the following script in MATLAB:

    dF2=0.001;
    dG2=0.001;
    initF2=0.522;
    initG2=-0.603;
    K=zeros(2);
    etaspan=[0 20];
    H=[1;1];
    options=odeset('AbsTol',1e-7,'RelTol',1e-4);
    while max(abs(H))>1e-8
    [eta,X]=ode45(@nN,etaspan,[0;initF2+dF2;1;initG2;0],options);
    n=size(eta,1);
    X2=[X(n,1);X(n,3)];
    [eta,X]=ode45(@nN,etaspan,[0;initF2;1;initG2+dG2;0],options);
    n=size(eta,1);
    X3=[X(n,1);X(n,3)];
    [eta,X]=ode45(@nN,etaspan,[0;initF2;1;initG2;0],options);
    n=size(eta,1);
    X1=[X(n,1);X(n,3)];
    K(1,1)=(X2(1)-X1(1))/dF2;
    K(2,1)=(X2(2)-X1(2))/dF2;
    K(1,2)=(X3(1)-X1(1))/dG2;
    K(2,2)=(X3(1)-X1(2))/dG2;
    H=K\-X1;
    initF2=initF2+H(1);
    initG2=initG2+H(2);
    end

    figure;
    hold all;
    plot(eta,X(:,1));
    plot(eta,X(:,3));
    plot(eta,(-1)*X(:,5));
    plot(eta,X(:,2));
    plot(eta,X(:,4));
    hold off;
    xlabel('\eta')
    hleg = legend('F','G','-H','F\prime','G\prime','Location','SouthEast');

    disp('Value of F''(0)')
    a = X(1,2);
    disp(a)

    disp('Value of G''(0)')
    b = X(1,4);
    disp(b)

    disp('Value of H(20)')
    c = X(end,5);
    disp(c)


    Calling the function:


    function Y=nN(x,X)

    n=1.3;

    dF1deta=X(2);

    dF2deta=n^(-1)*((X(2)^(2)+X(4)^(2))^((n-1)/2))^(-1)*((X(1)^(2)-X(3)^(2)+(X(5)+((1-n)/(n+1))*X(1)*x)*X(2))*(1+(n-1)*(X(2)^(2)+X(4)^2)^(-1)*X(4)^(2))-(n-1)*X(2)*X(4)*(X(2)^(2)+X(4)^(2))^(-1)*(2*X(1)*X(3)+(X(5)+((1-n)/(n+1))*X(1)*x)*X(4)));

    dG1deta=X(4);

    dG2deta=n^(-1)*((X(2)^(2)+X(4)^(2))^((n-1)/2))^(-1)*((2*X(1)*X(3)+(X(5)+((1-n)/(n+1))*X(1)*x)*X(4))*(1+(n-1)*(X(2)^(2)+X(4)^2)^(-1)*X(2)^(2))-(n-1)*X(2)*X(4)*(X(2)^(2)+X(4)^(2))^(-1)*(X(1)^(2)-X(3)^(2)+(X(5)+((1-n)/(n+1))*X(1)*x)*X(2)));

    dH1deta=-2*X(1)-(1-n)/(n+1)*x*X(2);

    Y = [dF1deta; dF2deta; dG1deta; dG2deta; dH1deta];


    From the plot that is produced I would like to find where the curves for F, F', G and G' are approximately equal to zero given a tolerance of 1e-6. Simply from looking at the plot I can see that this is around eta~5.7 but I would like to be able to print out this value of eta.

    Is this possible?

    Any help would be greatly appreciated.
     
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted