Could you check whether I am doing these questions right:(adsbygoogle = window.adsbygoogle || []).push({});

1. [itex] \int_{0}^{4} (2+x) dx [/itex]. So I use the Fundamental Theorem of Calculus [itex] F(b)-F(a)[/itex] and receive: [itex] \frac{(x+2)^{2}}{2} = F(4) - F(0) = 16 [/itex]

2. [itex] \int_{-1}^{1} (4t^{3} - 2t) dt = t^{4} - t^{2} = F(b)-F(a) = 0 [/itex]

3. [itex] \int_{0}^{3} \frac{1}{\sqrt{1+x}} dx = \frac{-1}{2}(1+x)^\frac{-3}{2} = F(b) - F(a) = \frac{7}{16} [/itex]

4. [itex] \int_{1}^{2}(\frac{1}{x^{2}} - \frac{1}{x^{3}}dx = \frac{x^{-1}}{-1} - \frac{x^{-2}}{-2} = F(b) - F(a) = \frac{1}{8}[/itex]

5. How would you do this one: [itex] \frac{3+ \ln x}{x} dx [/itex]?

6. [itex] \int^{1}_{-1} 3xe^{x^{2} -1} dx [/itex] Also how would I set this up? Would I let [itex] u = x^{2} - 1 [/itex]?

If the marginal cost is [itex] \frac{dC}{dx} = 675 + 0.5x [/itex] how would C change when [itex] x [/itex] increases from 50 to 51? So [itex] C = 675x + \frac{1}{4} x^{2} [/itex]. So would I just compute [itex] F(51) - F(50) [/itex]?

If you want to find the average value of [itex] f(x) = \frac{4}{\sqrt{x-1}}, [5,10] [/itex] would you use the formula [itex] \frac{1}{b-a}f'(x) [/itex]?

Thanks

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Fundamental Theorem of Calculus

**Physics Forums | Science Articles, Homework Help, Discussion**