Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Futuristic Power: Neutrino Reactors

  1. Jul 18, 2004 #1
    This is just a silly idea I had. Probably will never happen but interesting to talk about I think.

    If a substance could be developed that easily reacted with neutrinos could it become a revolutionary power source?

    First lets see how much power we could derive if we took all the energy from all the neutrinos that pass through 1 meter per second on the Earth's surface.

    Neutrino Flux at the Earth's surface:

    [tex]\nu_f = 5 \times 10^{10}[/tex][tex]{}{neutrinos} / {m^2 \cdot {s}}[/tex]

    Average Energy per Neutrino:

    [tex]E_\nu = 0.81{}MeV = 1.30 \time 10^{-13}{}J[/tex]

    [tex]{\nu_f} \cdot {E_\nu} = 0.007{}{J} / {m^2 \cdot {s}}[/tex]

    Hmm... Some what of a let down. 0.007 J / m s isn't very much at all. BUT, it would work anywhere on Earth at any time (ignoring minior changing in neutrino flux rates) with no pollution. Unlike solar power you wouldn't need to put it on roof top or in flat sunny open land. They could be underground inside buildings or anywhere.

    Another thing will be long term power for spacecraft seeing how it would work anywhere in the solar system, well close to the sun anyways, but regular solar power would probably be better. But maybe high energy cosmic neutrinos could supply ample power? Comments?
  2. jcsd
  3. Jul 19, 2004 #2
    Considering how difficult it is to detect Neutrinos as they are so weakly interacting, with current Physics at least, I fail to see how we would be able to create a useful energy source from neutrinos.
  4. Jul 19, 2004 #3
    Yes I'm saying if a substance was developed that could interact with them very easily.
  5. Jul 22, 2004 #4
    It would become a truely revolutionary wireless communication medium.
  6. Jul 22, 2004 #5

    Ivan Seeking

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    What does it take to likely intereact with a neutrino; something like a thousand miles of lead...or does this only ensure a small percentage will interact? I am just wondering if any astronomical objects like planets can be large enough and dense enough to affect neutrinos. Shouldn't a solid core in something like Jupiter be sufficient?
    Last edited: Jul 22, 2004
  7. Jul 30, 2004 #6
    No I just mean some type of super material that could absorb most of them and only be like a centimeter thick.
  8. Jul 30, 2004 #7

    Ivan Seeking

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    I used to have a T-shirt that shows two scientists standing at a chalk board. On the left side of the board are a series of complicated equations.

    On the right side of the board are some more complicated equations and a solution to the problem.

    Connecting the left and right side of the chalkboard are the words:

    ...and then a miracle occurs...

    Given your "miraculous" neutrino absorbing material it certainly would be worth discussing. :wink: Beyond that, I doubt that anyone would even have a guess as to how to make such a material or how it might even be possible.
    Last edited: Jul 30, 2004
  9. Jul 31, 2004 #8
    Heheh... I've seen those T-shirts too.

    As too how such a material would be constructed I don't know. Perhaps if (big if) you could somehow extend the weak force to cover a larger area, ergo increase the neutrino interaction cross-section. Am I even making any sence?
  10. Aug 2, 2004 #9


    User Avatar
    Homework Helper

    Last edited: Aug 2, 2004
  11. Aug 2, 2004 #10


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Well, there are at least two 'substances' that meet your criteria: degenerate nuclear matter (such as is found in a neutron star), and black holes. They could, in some sense I guess, even meet your other criterion:
    Trouble is, I'd guess the energy required to keep the 'substances' for exploding on contact, devouring the Earth, or some other minor inconvenience would be far greater than any usable energy extacted from neutrino reactions. :smile: :surprise: :cry:
  12. Aug 2, 2004 #11
    Yep, seems you would get a negative energy (very negative) output. Although perhaps they're other less dense materials? I just got done reading a thread on quark-gluon plasma and it got me thinking. In this case you have quarks flying all around and not forming nucleons but still they interact via the strong force, despite covering a larger "area" so to speak. Perhaps (emphasis on "perhaps"), the way inwhich the weak force behaves in normal atoms between electrons and protons acts differently in plasmas where nuclei and electrons roam free? If the range of the weak force is effected by the distribution of electrons and protons then it just might merit further investigation. This is all highly speculative and I'm propably wrong but I'm going to do some research on the subject and see what comes up. I remember that both the strong and weak forces have range limits but I'll look into anyways.

    Hey, I maybe wrong but at least of having fun with this and it give me something to work for!
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook