I admit I had this problem on a set, but it's since been due and no one was able to solve it. I've not cracked it either, so let's see what you guys think.(adsbygoogle = window.adsbygoogle || []).push({});

F is a field, p is a prime. K is a Galois extension over F whose Galois group is a p-group (we call an extension of order p^n for some n a p-extension). L is a p-extension (not necessarily Galois) of K (and hence of F). Prove that the Galois closure of L is a p-extension of F.

It's very easy to construct a counter-example when K/F is not Galois. For example, let F be the rationals, let K be the splitting field of x^3-2, and let L be K adjoin a root of x^9-2. [K:F]=3, [L:K]=3, but the Galois closure has order 18 over F. So the theorem very much depends on the Galois-ity of K/F.

Intuitively, I feel like if (letting L' be the Galois closure of L) |Gal(L'/F)|=[L':F] has a divisor that is not a p-power, since |Gal(L'/K)| must be simple, we can use Sylow's theorem to show a contradiction. Other thoughts include that if we can find Galois extensions of K that give irreducible factors for the minimal polynomial of a (where L=K(a) by the primitive element theorem), then these factors all have to have the same degree (by considering the action of a normal subgroup on a set that the parent group acts transitively on), hence they have to have p-power degree. Some kind of induction would show the minimal polynomial has a p-power splitting field.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Galois Closure of p-Extensions

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**