This statement was made in my class and I'm trying still to piece together the details of it...(adsbygoogle = window.adsbygoogle || []).push({});

We say that some rational polynomial, [tex]f[/tex] has a Galois group isomorphic to the quaternions. We can then conclude that the polynomial has degree [tex]n \geq 8[/tex].

I have a few thoughts on this and I might be overlooking something simple...but letting [tex]K[/tex] be the splitting field, then [tex][K:\mathbb{Q}][/tex] divides [tex]n![/tex] so [tex]n \geq 4[/tex].

My other thought is that since the Galois group has finite number of subgroups then between K and the rational numbers are a finite number of intermediate fields, thus K is simple. With [tex]K \cong \mathbb{Q}(a)[/tex] for some root of a minimal polynomial whose degree must be 8 since [tex]\mathbb{Q}(a) \cong \mathbb{Q}[x]/\langle m_a \rangle [/tex].

Does [tex]m_a[/tex] divide [tex]f[/tex] or something?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Galois group

**Physics Forums | Science Articles, Homework Help, Discussion**