Gauss' Theorem for gravitational force

  • Thread starter coki2000
  • Start date
  • #1
91
0
Hello,
I wonder that the gauss' theorem for gravitational force area.

[tex]\int\int_S \vec{g}\hat{n}dS=-4\pi GM=\int\int\int_V \vec{\nabla}\stackrel{\rightarrow}{g}dV[/tex]

[tex]\vec{g}=-G\frac{M}{r^2}\hat{r}\Rightarrow\hat{r}=\frac{\vec{r}}{r}\Rightarrow\vec{g}=-G\frac{M}{r^3}\vec{r}[/tex]

for [tex]\vec{r}=x\hat{x}+y\hat{y}+z\hat{z}[/tex] and [tex]r=\sqrt{x^2+y^2+z^2}[/tex]

[tex]\vec{\nabla}\vec{g}=-\frac{\partial}{\partial x}G\frac{M}{r^3}x-\frac{\partial }{\partial y}G\frac{M}{r^3}y-\frac{\partial }{\partial z}G\frac{M}{r^3}z=0[/tex]

The divergence of g has 0 so [tex]\int\int_S\vec{g}\hat{n}dS=0[/tex]

Where do I wrong please help me.Thanks.
 

Answers and Replies

  • #3
916
4
Uh, I'm not sure I understand all of your equations there. By [tex]\vec{\nabla}\vec{g}[/tex], did you mean, [tex]\vec{\nabla}\cdot\vec{g}[/tex]?

If so, then you should know that [tex]\vec{\nabla}\cdot\vec{g}[/tex] is not zero. The correct expression is,

[tex]\vec{\nabla}\cdot\vec{g} = -4\pi G\sum_{i=0}^n m_i \delta^3(\vec{r} - \vec{r_i})[/tex]

When dealing witih point masses, the divergence of the gravitational field is a sum of Dirac delta functions. That way when you take the surface integral of the gravitational field, the volume integral that you have to take on the right hand side will give you [tex]4\pi G[/tex] times the sum of the point masses inside the surface of integration. This is actually a very common error, and Griffiths' E&M book discusses it in the first chapter on vector calculus.

Hope that helps!
 
Last edited:
  • #4
nrqed
Science Advisor
Homework Helper
Gold Member
3,764
294
Hello,
I wonder that the gauss' theorem for gravitational force area.

[tex]\int\int_S \vec{g}\hat{n}dS=-4\pi GM=\int\int\int_V \vec{\nabla}\stackrel{\rightarrow}{g}dV[/tex]

[tex]\vec{g}=-G\frac{M}{r^2}\hat{r}\Rightarrow\hat{r}=\frac{\vec{r}}{r}\Rightarrow\vec{g}=-G\frac{M}{r^3}\vec{r}[/tex]

for [tex]\vec{r}=x\hat{x}+y\hat{y}+z\hat{z}[/tex] and [tex]r=\sqrt{x^2+y^2+z^2}[/tex]

[tex]\vec{\nabla}\vec{g}=-\frac{\partial}{\partial x}G\frac{M}{r^3}x-\frac{\partial }{\partial y}G\frac{M}{r^3}y-\frac{\partial }{\partial z}G\frac{M}{r^3}z=0[/tex]

The divergence of g has 0 so [tex]\int\int_S\vec{g}\hat{n}dS=0[/tex]

Where do I wrong please help me.Thanks.

You seem to use
[tex] \frac{\partial}{\partial x} \frac{1}{r^3} = 0 [/tex]
and similarly for the derivatives with respect to y and z. That's not the case!
 
  • #5
you pointed out in your derivation what r was equal to but did not use it when you were taking the partial I think.
 
  • #6
91
0
Uh, I'm not sure I understand all of your equations there. By [tex]\vec{\nabla}\vec{g}[/tex], did you mean, [tex]\vec{\nabla}\cdot\vec{g}[/tex]?

If so, then you should know that [tex]\vec{\nabla}\cdot\vec{g}[/tex] is not zero. The correct expression is,

[tex]\vec{\nabla}\cdot\vec{g} = -4\pi G\sum_{i=0}^n m_i \delta^3(\vec{r} - \vec{r_i})[/tex]

Hope that helps!
Yes,[tex]\vec{\nabla}\cdot\vec{g}[/tex] I mean. Thanks for your helps but I found that [tex]\vec{\nabla}\cdot\vec{g}[/tex] is zero.Let's I show it,

[tex]\vec{\nabla}\cdot\vec{g}=-GM(\frac{\partial}{\partial x}\frac{x}{(x^2+y^2+z^2)^{3/2}}+\frac{\partial}{\partial y}\frac{y}{(x^2+y^2+z^2)^{3/2}}+\frac{\partial}{\partial z}\frac{z}{(x^2+y^2+z^2)^{3/2}})[/tex]

Now I calculate first partial derivative after generalize the other derivatives.

[tex]-GM\frac{\partial}{\partial x}\frac{x}{(x^2+y^2+z^2)^{3/2}}=-GM\frac{(x^2+y^2+z^2)^{3/2}-3x^2(x^2+y^2+z^2)^{1/2}}{(x^2+y^2+z^2)^3}[/tex]
Then
[tex]\vec{\nabla}\cdot\vec{g}=-GM(\frac{(x^2+y^2+z^2)^{3/2}-3x^2(x^2+y^2+z^2)^{1/2}}{(x^2+y^2+z^2)^3}+\frac{(x^2+y^2+z^2)^{3/2}-3y^2(x^2+y^2+z^2)^{1/2}}{(x^2+y^2+z^2)^3}+\frac{(x^2+y^2+z^2)^{3/2}-3z^2(x^2+y^2+z^2)^{1/2}}{(x^2+y^2+z^2)^3})[/tex]

[tex]\vec{\nabla}\cdot\vec{g}=-GM(\frac{3(x^2+y^2+z^2)^{3/2}-3(x^2+y^2+z^2)(x^2+y^2+z^2)^{1/2}}{(x^2+y^2+z^2)^3})=0[/tex]

Where did I make wrong?I wonder it.Thanks.
 
  • #7
jtbell
Mentor
15,825
4,213
What happens when x = y = z = 0? :wink:
 
  • #8
Physically speaking, the divergence of g should depend upon mass density. There is a monopole source of gravity...mass!

Also, as a suggestion...work in spherical coordinates.
 

Related Threads on Gauss' Theorem for gravitational force

  • Last Post
Replies
8
Views
4K
Replies
3
Views
532
Replies
4
Views
635
  • Last Post
Replies
3
Views
2K
Replies
2
Views
3K
  • Last Post
Replies
5
Views
949
  • Last Post
Replies
3
Views
1K
Replies
12
Views
8K
Replies
6
Views
2K
Top