**1. The problem statement, all variables and given/known data**

The problem is:

For a particle with electric charge equal to that of one electron, the trajectory radius R is related to the absolute value of the perpendicular component [tex]P_{\bot}[/tex]of the relativistic moment perpendicular to [tex]\textbf{B}[/tex] from the relation:

[tex]P_{}^{} (MeV/c) = 3.00 \times10^{-4} BR (Gauss \times cm)[/tex]

**2. Relevant equations**

I know that:

1Tesla=10^4Gauss

1Coulomb=3x10^9Gauss

1m=10^2cm

**3. The attempt at a solution**

So:

[tex] \textbf{F}=q\textbf{v}\times\textbf{B}[/tex]

[tex] \textbf{F}_{\bot}=\frac{mv^2}{R}=qvB [/tex]

[tex] \textbf{P}_{\bot}= qBR [/tex]

where on the left side I transform P in MeV/c units obtaining a new value of P,

and on the right side I have qBR initially in Coulomb x Tesla x m.

So

[tex]qBR= (1.6 \times 10^{-19} \times 3\times10^9) (B \times 10^4 )(R \times 10^2)= 4.8 \times 10^{-4} (Gauss^2 \times cm) [/tex]

....who can find the error??? please help!!