I see that the formula for this general integral is(adsbygoogle = window.adsbygoogle || []).push({});

[tex] \int^{+\infty}_{-\infty} x^{2}e^{-Ax^{2}}dx=\frac{\sqrt{\pi}}{2A^{3/2}}[/tex]

However, I am not getting this form with my function. I transformed the integral using integration by parts so that I could use another gaussian integral that I knew at the time.

[tex] \int^{+\infty}_{-\infty} x^{2}e^{\frac{-2amx^{2}}{\hbar}}dx [/tex]

Let [tex] u = x^{2} \rightarrow du = 2x dx [/tex]

and

[tex] dv = e^{\frac{-2amx^{2}}{\hbar}}dx \rightarrow v = -\frac{\hbar}{4amx}e^{\frac{-2amx^{2}}{\hbar}} [/tex]

Therefore,

[tex] \int^{+\infty}_{-\infty} x^{2}e^{\frac{-2amx^{2}}{\hbar}}dx = \left x^{2}\left(-\frac{\hbar}{4amx}e^{\frac{-2amx^{2}}{\hbar}}\right)\right|^{+\infty}_{-\infty}-\int^{+\infty}_{-\infty}\left(-\frac{\hbar}{4amx}e^{\frac{-2amx^{2}}{\hbar}}\right)2xdx[/tex]

The middle term equals zero, so letting [tex]z =\left(\sqrt{2am/\hbar}\right)x \rightarrow dx= \left(\sqrt{\hbar/2am}\right)dz[/tex] gives

[tex] \int^{+\infty}_{-\infty} x^{2}e^{\frac{-2amx^{2}}{\hbar}}dx = \frac{\hbar}{2am}\int^{+\infty}_{-\infty}e^{\frac{-2amx^{2}}{\hbar}}\right)dx=\left(\frac{\hbar}{2am}\right)^{3/2}\int^{+\infty}_{-\infty}e^{-z^{2}}dz =\left(\frac{\hbar}{2am}\right)^{3/2}\sqrt{\pi}[/tex]

which is not in the appropriate form--missing a factor of 1/2. I can't see where I am going wrong. Any thoughts?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Gaussian Integral

**Physics Forums | Science Articles, Homework Help, Discussion**