Euler2718
- 90
- 3
I'm very interesting in functions of the nature:
f(x) = x^{x}
f(x) = x^{x^{x}}
and so on. I believe these are called tetrations? Regardless, I sought to generalize the nth derivative of f(x)=x^x and it is proving to be difficult.
First I tried just repeatedly differentiating until I could see a pattern:
f'(x) = x^{x}\left(1+\ln(x)\right)
f''(x) = x^{x-1}\left(1+x+2x\ln(x) + x\ln^{x}(x)\right)
f'''(x) = x^{x-2}\left( -1+3x+x^{2} +3x(1+x)\ln(x)+3x^{2}\ln^{2}(x)+x^{2}\ln^{3}(x)\right)
f^{4}(x) = x^{x-3}\left( 2-x+6x^{2}+x^{3}+4x(-1+3x+x^{2})\ln(x)+6x^{2}(1+x)\ln^{2}(x)+4x^{3}\ln^{3}(x)+x^{3}\ln^{4}(x) \right)
I couldn't seem to find a pattern here. So I tried representing f(x)=x^{x} as a power series:
f(x) = x^{x} = e^{x\ln(x)} = \sum_{n=0}^{\infty} \frac{1}{n!}x^n\ln^{n}(x)
Then maybe taking the derivatives of the power series could lead me to an easier pattern. After I took the first derivative I felt that it wasn't the case as:
f'(x) = \sum_{n=0}^{\infty} \frac{1}{(n-1)!}\left(1+\ln(x)\right)x^{n-1}\ln^{n-1}(x)
Which looks to be at a first glance more complex. Putting it through mathematica kind of left me with the same feeling of getting no where.
Is there anything I should be considering? Any methods that I could employ to solve my problem? I don't know much about higher level maths (I'm currently doing Calc III) .
f(x) = x^{x}
f(x) = x^{x^{x}}
and so on. I believe these are called tetrations? Regardless, I sought to generalize the nth derivative of f(x)=x^x and it is proving to be difficult.
First I tried just repeatedly differentiating until I could see a pattern:
f'(x) = x^{x}\left(1+\ln(x)\right)
f''(x) = x^{x-1}\left(1+x+2x\ln(x) + x\ln^{x}(x)\right)
f'''(x) = x^{x-2}\left( -1+3x+x^{2} +3x(1+x)\ln(x)+3x^{2}\ln^{2}(x)+x^{2}\ln^{3}(x)\right)
f^{4}(x) = x^{x-3}\left( 2-x+6x^{2}+x^{3}+4x(-1+3x+x^{2})\ln(x)+6x^{2}(1+x)\ln^{2}(x)+4x^{3}\ln^{3}(x)+x^{3}\ln^{4}(x) \right)
I couldn't seem to find a pattern here. So I tried representing f(x)=x^{x} as a power series:
f(x) = x^{x} = e^{x\ln(x)} = \sum_{n=0}^{\infty} \frac{1}{n!}x^n\ln^{n}(x)
Then maybe taking the derivatives of the power series could lead me to an easier pattern. After I took the first derivative I felt that it wasn't the case as:
f'(x) = \sum_{n=0}^{\infty} \frac{1}{(n-1)!}\left(1+\ln(x)\right)x^{n-1}\ln^{n-1}(x)
Which looks to be at a first glance more complex. Putting it through mathematica kind of left me with the same feeling of getting no where.
Is there anything I should be considering? Any methods that I could employ to solve my problem? I don't know much about higher level maths (I'm currently doing Calc III) .