I'm trying to prove that E must exceed the minimum value of V(x) for all normalizable solutions to the Schroed. eq. To do this I am going to show that in the case E < V(min), the wave function is not normalizable. Naturally I began with the normalization condition: int(|phi|^2)=1 and started taking derivatives on this. However, I cannot arrive at a contradiction. Any thoughts? Or any other ways to show the same result? Thanks.(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# General Q.M. question

**Physics Forums | Science Articles, Homework Help, Discussion**