(adsbygoogle = window.adsbygoogle || []).push({});

I am wondering as to how many metrics have been discovered that obey all the laws of General Relativity?

I am posting the ones that I have briefly studied, please post more if you have knowledge of them.

Schwarzschild metric:

[tex]c^2 {d \tau}^{2} =\left(1 - \frac{r_s}{r} \right) c^2 dt^2 - \left(1-\frac{r_s}{r}\right)^{-1} dr^2 - r^2 \left(d\theta^2 + \sin^2\theta \, d\phi^2\right),[/tex]

Kerr metric:

[tex]\begin{align} c^{2} d\tau^{2} = & \left( 1 - \frac{r_{s} r}{\rho^{2}} \right) c^{2} dt^{2} - \frac{\rho^{2}}{\Delta} dr^{2} - \rho^{2} d\theta^{2} \\ & - \left( r^{2} + \alpha^{2} + \frac{r_{s} r \alpha^{2}}{\rho^{2}} \sin^{2} \theta \right) \sin^{2} \theta \ d\phi^{2} + \frac{2r_{s} r\alpha \sin^{2} \theta }{\rho^{2}} \, c \, dt \, d\phi \end{align}[/tex]

Reissner–Nordström metric:

[tex]ds^2 = \left( 1 - \frac{r_\mathrm{S}}{r} + \frac{r_Q^2}{r^2} \right) c^2\, dt^2 - \frac{1}{1 - r_\mathrm{S}/r + r_Q^2/r^2}\, dr^2 - r^2\, d\theta^2 - r^2 \sin^2 \theta \, d\phi^2,[/tex]

Kerr–Newman metric:

[tex]c^{2} d\tau^{2} = -\left(\frac{dr^2}{\Delta} + d\theta^2 \right) \rho^2 + \left(c \, dt - \alpha \sin^2 \theta \, d\phi \right)^2 \frac{\Delta}{\rho^2} - \left(\left(r^2 + \alpha^2 \right) d\phi - \alpha c\, dt \right)^2 \frac{\sin^2 \theta}{\rho^2}[/tex]

BTZ black hole metric:

[tex]ds^2 = -\frac{(r^2 - r_+^2)(r^2 - r_-^2)}{l^2 r^2}dt^2 + \frac{l^2 r^2 dr^2}{(r^2 - r_+^2)(r^2 - r_-^2)} + r^2 \left(d\phi - \frac{r_+ r_-}{l r^2} dt \right)^2[/tex]

Alcubierre metric:

[tex]ds^2 = -\left(\alpha^2- \beta_i \beta^i\right)\,dt^2+2 \beta_i \,dx^i\, dt+ \gamma_{ij}\,dx^i\,dx^j[/tex]

(traversable) wormhole metric:

[tex]ds^2= - c^2 dt^2 + dl^2 + (k^2 + l^2)(d \theta^2 + \sin^2 \theta \, d\phi^2)[/tex]

Godel metric:

[tex]c^{2} d\tau^{2} = - \frac{1}{2 \Lambda} \left( -c^2 dt^2 + dr^2 - \frac{e^{2r} r^2}{2} \; d \theta^2 + r^2 \sin^2 \theta \; d\phi^2 - 2 r e^{r} \; c \; dt \; d\theta \right)[/tex]

Friedmann-Lemaître-Robertson-Walker metric:

[tex]c^{2} d\tau^{2} = -c^{2} dt^2 + a(t)^2 \left(\frac{dr^2}{1 - k r^2} + r^2 d\theta^2 + r^2 \sin^2 \theta \; d\phi^2 \right)[/tex]

Reference:

http://en.wikipedia.org/wiki/Schwarzschild_metric

http://en.wikipedia.org/wiki/Kerr_metric#Mathematical_form

http://en.wikipedia.org/wiki/Reissner–Nordström_metric#The_metric

http://en.wikipedia.org/wiki/Kerr–Newman_metric

http://en.wikipedia.org/wiki/BTZ_black_hole#The_case_without_charge

http://en.wikipedia.org/wiki/Alcubierre_drive#Mathematics_of_the_Alcubierre_drive

http://en.wikipedia.org/wiki/Wormhole#Metrics

http://en.wikipedia.org/wiki/Gödel_metric#Definition

http://en.wikipedia.org/wiki/Friedmann–Lemaître–Robertson–Walker_metric

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# General Relativity metrics

**Physics Forums | Science Articles, Homework Help, Discussion**