(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

y''+4y'+4y= t+exp(-2t)

find the general solution for the differential equation

2. Relevant equations

3. The attempt at a solution

general solution is sum of complementary function and particular integral

frist finding complementary function

y''+4y'+4y=0

let y=Aexp(mt)

y'=mA=exp(mt)

y''=(m^2)A=exp(mt)

substitute back and get

((m^2)+4m+4)Aexp(mt)=0

m=-2,0

so complementary function:

y=Aexp(-2t)+B

now find particular integral

y''+4y'+4y=t+exp(-2t)

try

y=a+bexp(-2t)

y'=-2bexp(-2t)

y''=4bexp(-2t)

substitute back and get

4bexp(-2t)-8bexp(-2t)+4(a+bexp(-2t))=t+exp(-2t)

(4+4-8)bexp(-2t)+4a=t+exp(-2t) !!!!

so a = t/4 but b will always go to zero i dont know where my mistake is

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: General solution for DE

**Physics Forums | Science Articles, Homework Help, Discussion**