- #1

Geofleur

Science Advisor

Gold Member

- 426

- 176

**!!**

In Dennery and Krzywicki, they give an example of how to put a matrix in Jordan canonical form (pp. 167-170). They start with a 4x4 matrix [A] that looks kind of messy and transform it to a quasi-diagonal form [A]' = [B^(-1)] [A]

In Dennery and Krzywicki, they give an example of how to put a matrix in Jordan canonical form (pp. 167-170). They start with a 4x4 matrix [A] that looks kind of messy and transform it to a quasi-diagonal form [A]' = [B^(-1)] [A]

**that is less full (I'm distinguishing between operators A and their matrix representations [A]). So far so good.**

They go on to say that vectors in the null space of (A-2E)^3 are also in the null space of ([A]' - 2[E])^2. This, they say, shows that A has no generalized eigenvectors of rank 3. They seem to be assuming that if ([A]'-2[E])^2 [v]' = 0 then (A-2E)^2 |v> = 0 (|v> is a vector without reference to a particular basis, and [v]' = [B^(-1)] [v]). Then they would have

(A-2E)^3 |v> = 0 implies that (A-2E)^2 |v> = 0

and this statement does indeed seem incompatible with the existence of a generalized eigenvector of rank 3 for A.

Now for my big confusion:

If ([A]'-2[E])^2 [v]' = 0 is just a particular representation of (A-2E)^2 |v> = 0, then it would seem that so is ([A]-2[E])^2 [v] = 0. But

([A]'-2[E])^2 [v]' = ([B^(-1)] [A]They go on to say that vectors in the null space of (A-2E)^3 are also in the null space of ([A]' - 2[E])^2. This, they say, shows that A has no generalized eigenvectors of rank 3. They seem to be assuming that if ([A]'-2[E])^2 [v]' = 0 then (A-2E)^2 |v> = 0 (|v> is a vector without reference to a particular basis, and [v]' = [B^(-1)] [v]). Then they would have

(A-2E)^3 |v> = 0 implies that (A-2E)^2 |v> = 0

and this statement does indeed seem incompatible with the existence of a generalized eigenvector of rank 3 for A.

Now for my big confusion:

If ([A]'-2[E])^2 [v]' = 0 is just a particular representation of (A-2E)^2 |v> = 0, then it would seem that so is ([A]-2[E])^2 [v] = 0. But

([A]'-2[E])^2 [v]' = ([B^(-1)] [A]

**- 2[E])^2 [B^(-1)] [v] =**

[B^(-1)]^2 ([A] - 2[E])^2[B^(-1)]^2 ([A] - 2[E])^2

**^2 [B^(-1)] [v] =**

[B^(-1)]^2 ([A] - 2[E])^2[B^(-1)]^2 ([A] - 2[E])^2

**[v] = 0.**

The operators ([A]'-2[E])^2 and ([A] - 2[E])^2 do not seem to have to same vectors in their nullspaces. There is a factor ofThe operators ([A]'-2[E])^2 and ([A] - 2[E])^2 do not seem to have to same vectors in their nullspaces. There is a factor of

**that would have to be the identity matrix there in the last equation. So what, then, does it mean to talk about *the* nullspace of (A-2E)^2? What would particular representations of the operator look like?**