I have a conjecture that the equation X^2 - 2Y^2 = P has solutions in odd integers if P is a prime of the form 8*N+1. I know of a paper that requires one to find Q such that Q^2 = 2 mod P inorder to solve these equations using continued fractions. To get to first base in proving my conjecture, is there a proof that 2 is a quadratic residue of P where P is a prime of the form 8*N+1?(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Generalized Pell Equation and Primes

**Physics Forums | Science Articles, Homework Help, Discussion**