Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Genesis of the H-α

  1. Oct 15, 2013 #1

    bobie

    User Avatar
    Gold Member

    Hi,
    I am trying to learn the origins of the Hydrogen spectral series.
    http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
    I found that H-α has wavelength 656.28525 nm that corresponds to 1.8892 eV (the PE difference from energy levels 3 and 23.4 - 1.511)
    but the electron needs a similar amount of KE, falling from r = 4.76 to 2.12 x 10^-7 cm.) and increasing its speed
    - where does it get it from?
    - why the KE gain is equal to the E of emitted photon?
    - can we calculate/ measure the time it takes to move from one level to the other?
    - does the electron keep circling while falling?
    Thanks
     
    Last edited: Oct 15, 2013
  2. jcsd
  3. Oct 15, 2013 #2
    1: As you said, the energy comes from the potential energy
    2: That's a consequence of the virial theorem
    3: No. The electron doesn't follow a classic trajectory so the question doesn't make sense
    4: No. The electron doesn't follow a classic trajectory so the question doesn't make sense
     
  4. Oct 15, 2013 #3

    bobie

    User Avatar
    Gold Member

    Thanks, dauto, in the link I quoted the difference of energy is only 1.88 eV, that is enough for the photon, have I misread?
     
  5. Oct 15, 2013 #4
    These energy levels represent the energy (total) not just PE.
     
  6. Oct 15, 2013 #5
    1.89 eV is the energy difference between the levels which includes both the kinetic and potential energy changes. The potential energy change is twice as big (with opposite sign) as the change in kinetic energy - because of the virial theorem as I said.
     
    Last edited: Oct 15, 2013
  7. Oct 16, 2013 #6

    bobie

    User Avatar
    Gold Member

    Thanks for your help, I tried this http://en.wikipedia.org/wiki/Virial_theorem
    but it's too hard for me , can you explain how it works? is it that the electron can use up only half of the energy?

    Could you show me practically how to calculate the energy the electron gains from H3 to H2?
    Fcm = 2.3 * 10-19
    r3 = 9 * rbohr
    r2 = 4 * rbohr
    the drop is 5r = 2.645 * 10-8cm
     
    Last edited: Oct 16, 2013
  8. Oct 16, 2013 #7

    dlgoff

    User Avatar
    Science Advisor
    Gold Member

  9. Oct 16, 2013 #8
    From the wiki page you quoted:


    [itex] 2 \langle T \rangle = n \langle V_\text{TOT} \rangle, [/itex]

    where n is taken from the potential V(r) = αrn

    for the case of an electromagnetic force, the potential is given by V(r) = αr-1, so clearly we have n = -1. plugging that back into the virial equation we get


    [itex] 2 \langle T \rangle = - \langle V_\text{TOT} \rangle. [/itex],

    in other words the average potential energy is twice as big (with opposite sign) to the average kinetic energy.
     
  10. Oct 16, 2013 #9
    The electron does not gain but lose energy when it goes from level 3 to level 2.
    The change in energy is ΔE=E2-E3=-3.4eV -(-1.5eV)=-1.9eV.
    So it loses 1.9 eV.
     
  11. Oct 17, 2013 #10

    bobie

    User Avatar
    Gold Member

    It loses PE but gains KE as it increases its speed from 1/3 to 1/2 of 2.188*108c/s, correct?
     
  12. Oct 17, 2013 #11

    bobie

    User Avatar
    Gold Member

    Thanks, dauto,
    To what KE are you referring?
    the speed at
    H3 is 2.18*108/3, KE3 = 13.6/9 = 1.51 eV
    H2 is 2.18*108/2, KE2 = 3.4 eV
    ΔE= 13.6*5/36 =1.89 eV

    f= 2.3*10-23 dyn, right?
    the formula to find ΔPE is f *5/36r =3.78 eV, right?

    If you give an electron in H2 3.78 eV energy, will it emit a 1.89 eV photon?
     
    Last edited: Oct 17, 2013
  13. Oct 17, 2013 #12

    jtbell

    User Avatar

    Staff: Mentor

    Yes. The amount of PE lost is greater than the amount of KE gained, so the total E decreases.
     
  14. Oct 17, 2013 #13
    No, you don't have to give it anything.
    It will spontaneously "go" from level 3 to 2 and emit a photon.
    You need to give him energy to go the other way.

    I am still trying to understand what are you after with all this.
    The change in potential energy is negative (it decreases). You keep moving in circles ignoring the things already discussed. So it's not 3.78 eV but -3.78 eV.
     
  15. Oct 17, 2013 #14

    bobie

    User Avatar
    Gold Member

    That is what I am asking: an e is in a level (say H2), if you give energy 1.89 eV, will it jump to level 3?, if you give him more (must it be 2*1.89 ?), will it emit a photon?
     
  16. Oct 17, 2013 #15
    Yes to first. No to second. Unless you are thinking about stimulated emission, as in laser. In which case the photon goes back to level 2 in the process and will be two photons at the end. But I doubt this is what you have in mind.
    It seems you have some fundamental confusion or misunderstanding.
    Splitting the energy into potential and kinetic is not so relevant. It's simply that transitions of electrons between energy levels (total energy) are accompanied by emission or absorption of photons.
    If it goes "up" it needs to absorb a photon. If it goes "down" it emits a photon.
    Trying to understand these in terms of classical mechanics can take you to some point but not farther.
     
    Last edited: Oct 17, 2013
  17. Oct 18, 2013 #16

    bobie

    User Avatar
    Gold Member

    I am a student , I'm trying to understand the behaviour of electrons.
    When it goes down it gets rid of the surplus PE ,
    when it goes back up from 2 to 3 it needs the same amount of energy 1.89 eV, if you give it more, it must absorb absorb all you give, then to stay at level 3, it should get rid of surplus energy, is this correct?
     
  18. Oct 18, 2013 #17

    DrClaude

    User Avatar

    Staff: Mentor

    As nasu said, it is best to stop thinking in terms of PE and KE, and just think of the total energy of the electron.

    This is not correct. The energy must match exactly. If the photon carries an amount of energy that is not equivalent to the difference between the current energy level of the electron and another accessible level, it will not be absorbed.

    This is why an absorption spectrum is made up of discrete line, corresponding to the possible transitions.
     
  19. Oct 18, 2013 #18

    bobie

    User Avatar
    Gold Member

    That is what is hard to understand, if the energy is in excess it can refuse the whole energy, or I got it wrong again?
     
  20. Oct 18, 2013 #19

    DrClaude

    User Avatar

    Staff: Mentor

    It doesn't "refuse" the energy. There is just no significant interaction between the photon and the atom if the energies don't match. Welcome to quantum mechanics!

    Actually, you see the same thing in classical systems. If you have a system that has a particular oscillation frequency, you can only excite it if you provide energy at that same frequency. Just think of a radio.
     
  21. Oct 18, 2013 #20

    bobie

    User Avatar
    Gold Member

    Yes also a string as only one frequency of resonation and knows it very well.
    But here is different, an electron in a level cannot "know" what energy it takes to go to another level. And , after all, I thought, it cannot in any way resist if you apply an electric or magnetic field, or can it?
    When you give it k energy it moves, i you give it k+ it should react even faster, I thought
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Genesis of the H-α
  1. Solving [H,x] = (Replies: 2)

Loading...