- #1

- 26

- 0

## Homework Statement

We shall find the equation for the shortest path between two points on a cone, using the Euler-Lagrange equation.

## Homework Equations

## The Attempt at a Solution

x = r sin(β) cos(θ)

y = r sin(β) sin(θ)

z = r cos(β)

dx = dr sin(β) cos(θ) - r sin(β) sin(θ) dθ

dy = dr sin(β) sin(θ) + r sin(β) cos(θ) dθ

dz = dr cos(β)

[itex]ds^{2} = dx^{2} + dy^{2} + dz^{2}[/itex]

[itex]ds^{2} = dr^{2} + r^{2} sin^{2}(β) dθ^{2}[/itex]

Setting: r' = dr/dθ

[itex]f= \sqrt{r'^{2} + r^{2} sin^{2}(β)}[/itex]

Is this correct so far? Now I like to apply the Euler-Lagrange equations

[itex] \frac{\partial f}{\partial r} - \frac{d}{dθ}\frac{\partial f}{\partial r'} = 0[/itex]

But I'm getting into trouble solving this:

What are the solutions for the single differentials? I'm unsure how d/dr' effects r, d/dr effects r' and d/dθ r'.

[itex] \frac{\partial f}{\partial r} = \frac{r sin(β)}{\sqrt{r'^{2} + r^{2} sin^{2}(β) }}[/itex] ?

In the end I like to get:

[itex]r\frac{d^{2}r}{dθ^{2}} - 2(\frac{dr}{dθ})^{2} - r^{2}sin^{2}(β)[/itex]

Thanks.