1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Geometry Problem in Context of Image-Charge Problem (Griffiths,p. 125, [3.15],[3.16])

  1. Aug 27, 2010 #1
    1. The problem statement, all variables and given/known data

    You have charge inside metal-sphere-shell held at V = 0, and you know an image-charge goes outside the metal-sphere-shell to formulate the equivalent and unique potential. Oh, and the metal-sphere-shell is of radius "a". You get to the point where you superimpose the image and real charges' potentials like so:

    [tex]\Phi \left( {a{\bf{\hat r}}} \right) \equiv 0 = \frac{1}{{4\pi {\varepsilon _0}}}\left( {\frac{q}{{\left| {{{{\bf{\vec r}}}_0} - {\bf{\vec r}}} \right|}} + \frac{{{q_i}}}{{\left| {{{{\bf{\vec r}}}_i} - {\bf{\vec r}}} \right|}}} \right)[/tex]

    in which: r-arrow is position at which potential is being considered, r[0] is position vector of original charge, and r is position vector of image charge. also: q[0] and q are the charges of real and image charges, respectively.

    Prove that the charge of the image charge is:
    [itex]{q_i} = - \frac{a}{{\left| {{{{\bf{\vec r}}}_i}} \right|}}[/itex]

    ...and that the image charge is located a radial distance:
    [itex]\left| {{{{\bf{\vec r}}}_i}} \right| = \frac{{{a^2}}}{{\left| {{{{\bf{\vec r}}}_0}} \right|}}[/itex]


    2. Relevant equations
    uniqueness, and law of cosines. law of cosines seems key, as it is a Griffiths hint: consider it applied to one of the scalar-denominators of the superposition of potentials from (1)

    [tex]\left| {{{{\bf{\vec r}}}_0} - a{\bf{\hat r}}} \right| = \sqrt {({{{\bf{\vec r}}}_0} - a{\bf{\hat r}}) \bullet ({{{\bf{\vec r}}}_0} - a{\bf{\hat r}})} = \sqrt {{{\left| {{{{\bf{\vec r}}}_0}} \right|}^2} + {{\left| {a{\bf{\hat r}}} \right|}^2} - 2\left| {{{{\bf{\vec r}}}_0}} \right|\left| {a{\bf{\hat r}}} \right|\cos {\theta _{{{{\bf{\vec r}}}_0}{\bf{\hat r}}}}} [/tex]

    ...in which the large "dot" denotes the scalar/dot product. Similar law-of-cosine treatment for other scalar denominator (that of the image charge):
    [tex]\left| {{{{\bf{\vec r}}}_i} - a{\bf{\hat r}}} \right| = \sqrt {{{\left| {{{{\bf{\vec r}}}_i}} \right|}^2} + {{\left| {a{\bf{\hat r}}} \right|}^2} - 2\left| {{{{\bf{\vec r}}}_i}} \right|\left| {a{\bf{\hat r}}} \right|\cos {\theta _{{{{\bf{\vec r}}}_0}{\bf{\hat r}}}}} [/tex]

    Also: the image charge and real charge lie along the same line as the circle’s radius, so:

    [tex]{\theta _{{{{\bf{\vec r}}}_0}{\bf{\hat r}}}} = {\theta _{{{{\bf{\vec r}}}_i}{\bf{\hat r}}}} = \theta [/tex]

    3. The attempt at a solution

    Use law of cosines in the superposition:
    {Q_i}\left| {{{{\bf{\vec r}}}_0} - a{\bf{\hat r}}} \right| = - Q\left| {{{{\bf{\vec r}}}_i} - a{\bf{\hat r}}} \right| \\
    {Q_i}\sqrt {{{\left| {{{{\bf{\vec r}}}_0}} \right|}^2} + {a^2} - 2\left| {{{{\bf{\vec r}}}_0}} \right|a\cos \theta } = - {Q_0}\sqrt {{{\left| {{{{\bf{\vec r}}}_i}} \right|}^2} + {a^2} - 2\left| {{{{\bf{\vec r}}}_i}} \right|a\cos \theta } \\
    {Q_i} = - {Q_0}\frac{{\left| {{{{\bf{\vec r}}}_i}} \right|}}{{\left| {{{{\bf{\vec r}}}_0}} \right|}}\left( {\frac{{\left| {{{{\bf{\vec r}}}_i}} \right| - 2a\cos \theta }}{{\left| {{{{\bf{\vec r}}}_0}} \right| - 2a\cos \theta }}} \right) \\

    Crude approach: plug in various values of "theta", and mandate they give the same image charge potential. Let us take a walk to the line between the already-parallel r or r[0]. Now: r, our position-vector, is parallel to both r and r[0] , meaning theta -> 0 , which makes this relation just under (3) of "Attempt..." into:
    [tex]{Q_i} = - {Q_0}\frac{{\left| {{{{\bf{\vec r}}}_i}} \right|}}{{\left| {{{{\bf{\vec r}}}_0}} \right|}}\left( {\frac{{\left| {{{{\bf{\vec r}}}_i}} \right| - 2a\cos 0}}{{\left| {{{{\bf{\vec r}}}_0}} \right| - 2a\cos 0}}} \right) = - {Q_0}\frac{{\left| {{{{\bf{\vec r}}}_i}} \right|}}{{\left| {{{{\bf{\vec r}}}_0}} \right|}}\left( {\frac{{\left| {{{{\bf{\vec r}}}_i}} \right| - 2a}}{{\left| {{{{\bf{\vec r}}}_0}} \right| - 2a}}} \right)[/tex]

    What if theta -> pi/2?

    [tex]{Q_i} = - {Q_0}\frac{{\left| {{{{\bf{\vec r}}}_i}} \right|}}{{\left| {{{{\bf{\vec r}}}_0}} \right|}}\left( {\frac{{\left| {{{{\bf{\vec r}}}_i}} \right| - 2a\cos {\textstyle{\pi \over 2}}}}{{\left| {{{{\bf{\vec r}}}_0}} \right| - 2a\cos {\textstyle{\pi \over 2}}}}} \right) = - {Q_0}\frac{{{{\left| {{{{\bf{\vec r}}}_i}} \right|}^2}}}{{{{\left| {{{{\bf{\vec r}}}_0}} \right|}^2}}}[/tex]

    Stupid! I am shy about setting something equal to anther thing...I'll prolly generate an algebra-mess.

    Griffiths does say that picking image-charge magnitude and location is a bit of an art rather than a science. Sigh.
  2. jcsd
  3. Aug 27, 2010 #2
    Re: Geometry Problem in Context of Image-Charge Problem (Griffiths,p. 125, [3.15],[3.

    I reached a contradiction by setting the theta -> 0 and theta -> pi/2 results equal to one another:

    \frac{{\left| {{{{\bf{\vec r}}}_i}} \right|}}{{\left| {{{{\bf{\vec r}}}_0}} \right|}}\left( {\frac{{\left| {{{{\bf{\vec r}}}_i}} \right| - 2a}}{{\left| {{{{\bf{\vec r}}}_0}} \right| - 2a}}} \right) = - \frac{{{Q_i}}}{{{Q_0}}} = \frac{{{{\left| {{{{\bf{\vec r}}}_i}} \right|}^2}}}{{{{\left| {{{{\bf{\vec r}}}_0}} \right|}^2}}} \\
    \left( {\left| {{{{\bf{\vec r}}}_i}} \right| - 2a} \right)\left| {{{{\bf{\vec r}}}_0}} \right| = \left| {{{{\bf{\vec r}}}_i}} \right|\left( {\left| {{{{\bf{\vec r}}}_0}} \right| - 2a} \right) \\
    \left| {{{{\bf{\vec r}}}_i}} \right|\left| {{{{\bf{\vec r}}}_0}} \right| - 2a\left| {{{{\bf{\vec r}}}_0}} \right| = \left| {{{{\bf{\vec r}}}_i}} \right|\left| {{{{\bf{\vec r}}}_0}} \right| - 2a\left| {{{{\bf{\vec r}}}_i}} \right| \\
    \left| {{{{\bf{\vec r}}}_0}} \right| = \left| {{{{\bf{\vec r}}}_i}} \right| \\
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook