- #1

- 252

- 4

$${\displaystyle T^{\mu \nu }=\left(\rho+{\frac {p}{c^{2}}}\right)\,v^{\mu }v^{\nu }-p\,\eta ^{\mu \nu }\,}\quad(1)$$

with ##v^{\nu}=\dfrac{\text{d}x^{\nu}}{\text{d}\tau}## and

##V^{\nu}=\dfrac{\text{d}x^{\nu}}{\text{d}t}## (we have ##v^{\nu}=\gamma\,V^{\nu}##)

So, finally, I have to get the following relation :

$$\dfrac{\partial \vec{V}}{\partial t} + (\vec{V}.\vec{grad})\vec{V} = -\dfrac{1}{\gamma^2(\rho+\dfrac{p}{c^2})} \bigg(\vec{grad}\,p+\dfrac{\vec{V}}{c^2}\dfrac{\partial \rho}{\partial t}\bigg)\quad(2)$$

To get this relation, I must use the conservation of energy : ##\partial_{\mu}T^{\mu\nu}=0\quad(3)##

If someone could help me to find the equation ##(2)## from ##(1)## and ##(3)##, this would be nice to indicate the tricks to apply.

Regards