1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Give the probability of a permutation of a set of numbers from 0 to 9 if you select:

  1. Sep 4, 2011 #1
    1. The problem statement, all variables and given/known data
    In a state lottery, four digits are to be selected from 0 to 9. Suppose that you win if any permutation of your selected integers is drawn. Give the probability of winning if you select:

    a) 6,7,8,9
    b) 6,7,8,8
    c) 7,7,8,8
    d) 7,8,8,8

    2. Relevant equations
    Now, this is what I don't have.
    I can easily find the a) by the multiplication rule 4*3*2*1.
    But the next few don't make sense with any formula I am aware of. I found there probabilities with a tree diagram. Is there a formula to find out what happens if you replace a 9 with a repeated digit?


    3. The attempt at a solution

    a) 4*3*2*1 = 24. The probability is 24/10000.
    b) Using a tree diagram, I get 12/10000
    c) Another tree diagram, I get 6/10000
    d) I thought I had a formula saying divide by 2, but it stops when the tree diagram gives a 4/10000

    I really just need to be made aware of a relevant equation. If I have that, I can solve this on my own--I believe lol. Thanks!
     
  2. jcsd
  3. Sep 4, 2011 #2

    lanedance

    User Avatar
    Homework Helper

    Re: Give the probability of a permutation of a set of numbers from 0 to 9 if you sele

    i think you'll need to consider a counting argument for each case rather than finding a fits all equation

    so there are 10.10.10.10 = 10^4 = 10000 possible outcomes for the lottery

    now say we chose 8888 there is only one distinct arrangement of this number so the probability of winning is
    1/10000

    now say we chose 8887 there are 4 places the 7 could occur so there probability of winning is
    4/10000
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook