I am trying to learn about Holonomy groups. My objective is to read Submanifolds and Holonomy from Berndt, Olmos and Console. I know I need a lot of prerequisites before understanding that book. So I started first reading Lee's book of Smooth Manifolds (I readed it until the Submanifolds Chapter and then I jumped to Tensor Theory). After that I started reading Lee's book of Riemannian Geometry (I have nearly completed it, I am in the Submanifolds Chapter).(adsbygoogle = window.adsbygoogle || []).push({});

Until now, I have found all the concepts I learned from Lee's Riemannian Book very algebraic. I mean, I still don't understand the geometric value of the riemannian curvature endomorphism, the curvature tensor or the scalar curvature.

I have tried now to pick a book about holonomy. I took from the library Joyce book:Riemannian holonomy groups and calibrated geometry. It had different definitions about connections and was very difficult to follow. I tried on Riemannian Geometry and Holonomy Groups, also difficult and different definitions.

So my question is what do you suggest guys on reading now to try to understand holonomy? Maybe I need to read a more advanced book on riemannian geometry than Lee's book. I was thinking maybe on Spivak vol 1 & vol 2 or Foundations of Differential Geometry of Kobayashi and Nomizu. Or is there any book that explains about holonomy with the concepts I have learned until now?

Thanks in advanced,

Sergio

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Good Books to learn Holonomy

**Physics Forums | Science Articles, Homework Help, Discussion**