Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Good electron-hole conductor?

  1. Feb 21, 2013 #1
    Which materials exhibit good electron and hole conductivity in the same time?
    And which of them are cheap and available?
  2. jcsd
  3. Feb 21, 2013 #2


    User Avatar
    Science Advisor
    Gold Member

    Silicon meets all of the requirements you have listed.
  4. Feb 21, 2013 #3
    Something much better than intrinsic semiconductors?I need hole conductivity comparable to electron conductivity in metals.And electronic conductivity too.
  5. Feb 22, 2013 #4
    sure. Tungsten conducts electricity through holes and this is shown through the Hall coefficient being negative.
  6. Feb 22, 2013 #5
    Seem to be wrong.
    www.phys.utk.edu/labs/modphys/Hall Effect.pdf
    I was not able to find any mention in In-et that Tungsten is hole conductor.
    Could you give any link about it? I need some material that is electrone-hole conductor at room temperature and could conduct holes in all directions under usual circumstances.
    Last edited: Feb 22, 2013
  7. Feb 22, 2013 #6


    User Avatar
    Science Advisor

    Probably all the semi-metals, e.g. Bismuth.
  8. Feb 22, 2013 #7
    what do you need this for? Understanding the question better will (hopefully) result in better answers...
  9. Feb 22, 2013 #8
    New concepts are not allowed to reveal and discuss here.
    But I phrased my question clear enough.
  10. Feb 22, 2013 #9
    You may be looking for a semimetal.

    Arsenic, antimony, and bismuth are semimetals that are cheap and available.
    Be very careful working with that arsenic.

    Graphite is usually found in multicrystal form. I don't think the multicrystal form is a good conductor. Single crystal graphite are quite expensive. However, graphite would be safe.

    Alpha-tin may be interesting. There may be a temperature issue.

    Here is a link and quote on semimetals.
    “The semimetallic state is similar to the metallic state but in semimetals both holes and electrons contribute to electrical conduction. With some semimetals, like arsenic and antimony, there is a temperature-independent carrier density below room temperature (as in metals) while, in bismuth, this is true at very low temperatures but at higher temperatures the carrier density increases with temperature giving rise to a semimetal-semiconductor transition.

    The classic semimetallic elements are arsenic, antimony, bismuth, α-tin (gray tin) and graphite, an allotrope of carbon.”
  11. Feb 22, 2013 #10
    You may also find some “narrow gap semiconductors” that are useful in their intrinsic (nearly pure) form.

    A narrow gap semiconductor would be an insulator at absolute zero. However, the band gap is small. If the band gap is small enough, thermal excitations will produce both electrons and holes even at room temperature. Therefore, a narrow band semiconductor would be a lot like a semimetal.

    I made a mistake in another post. Grey tin is a narrow gap semiconductor, not a semimetal. For your purposes, they may be the same. After all, both narrow gap semiconductors and semimetals have both conduction-electrons and valence-holes at room temperature.

    Other narrow gap semiconductors include PbS, InAs,, HgCdSe, PbSe. A bigger list is found in the following link.

    “Narrow gap semiconductors are semiconducting materials with a band gap that is comparatively small compared to silicon. They are used as infrared detectors or thermoelectrics.”

    I discussed semimetals in a separate post.
  12. Feb 23, 2013 #11


    User Avatar
    Science Advisor

    Are you sure?
  13. Feb 23, 2013 #12
    As I know the best hole mobility among pure semiconductors has Grmanium.But it still not too high.Do not know about semimetals.Maybe you could give link with exact data?I know that excellent hole conductivity is expected for graphene,but it is rare and expensive.What would be approx. price of one-crystall graphite?Is it brittle?I need material with hole conductivity which would be comparable to at least electron conductivity in carbon.Also graphite as I know,doesn't conduct current in all directions.Only in one of them it seems.I was not able to find any clear mentioning in In-et about hole conductivity in graphite.
    One more question: what is the max. voltage that p-type semiconductors are able to withstand?
    Last edited: Feb 23, 2013
  14. Feb 23, 2013 #13

    I am doing a search on it. However, I get answers that vary with the reference.

    Here is on link and quote on the subject of grey tin. I don’t know what the author is talking about. I had thought that the electronic structure determines whether a material is a semiconductor or semimetal.

    “Grey tin has the same crystalline structure as that of the diamond allotrope of carbon. It behaves as if it was a semiconductor (with a band gap of 0.08 eV) but has the electronic band structure of a semimetal.[361] It is sometimes referred to as a metalloid.”

    The author here implies that there is a definition for semimetal that does not incorporate electronic structure.

    Now I am curious. Could someone help me out here? How should grey tin be classified, exactly?

    Regardless, grey tin is a material which at higher temperatures has both electrons and holes. However, grey tin is unstable at room temperature. Therefore, grey tin probably doesn't satisfy the requirements of the original poster (OP).
  15. Feb 23, 2013 #14


    User Avatar
    Science Advisor

    I think he is maybe referring to a direct band gap of 0.08 eV . Semimetals often have a vanishing indirect band gap but a non-vanishing direct band gap, i.e. there are electron and hole pockets.
    These band structures are lately of great interest as spin orbit coupling may lead to topological insulators.
  16. Feb 24, 2013 #15
    It is claimed that some metals (such as Iron) have positive Hall coeficient.But it seems that Hall effect is observed in strong magnetic fields only.Does it mean that in absence of strong fields Iron will have very small hole conductivity?
  17. Feb 25, 2013 #16


    User Avatar
    Science Advisor

    No, the type of charge carriers is independent of the field. You only need the field for diagnostic purposes. However I would be careful with the interpretation of the Hall coefficient in terms of nature of the charge carriers.
  18. Feb 25, 2013 #17
    You need to look for a conductor which has the value of (carrier conc. x avg. mobility) same for both electrons and holes. I don't think such thing naturally exists.
  19. Feb 25, 2013 #18
    [STRIKE]I think you need a conductor for which (carrier conc. x avg. mobility) is same for both electrons and holes. That kind of thing does not exist naturally[/STRIKE]

    EDIT: Damn forgetful mind.
  20. Feb 25, 2013 #19
    Especially in ferromagnetic materials. Magnetic fields don't penetrate ferromagnetic materials very well. So the "anomalous Hall effect" in iron may be caused by something other than the charge of the carrier. It may have something to do with the ferromagnetism.
  21. Feb 26, 2013 #20
    Probably there should be some metal alloy with anomalously low effective mass of holes.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook