It is very well known result that ##grad[e^{i\vec{k}\cdot \vec{r}}]=i\vec{k}e^{i\vec{k}\cdot \vec{r}}##. Also ##\vec{k}\cdot \vec{r}=kr\cos \theta## and ##gradf(r)=\frac{df}{dr} grad r##. Then I can write(adsbygoogle = window.adsbygoogle || []).push({});

[tex]grad e^{ikr\cos \theta}=ik\cos \theta e^{i \vec{k}\cdot \vec{r}} \frac{\vec{r}}{r}=ik\frac{\vec{k}\cdot \vec{r}}{kr}e^{i\vec{k}\cdot \vec{r}} \frac{\vec{r}}{r}[/tex]

Somehow it is the same result only if ##\vec{k}=\frac{(\vec{k}\cdot \vec{r})\vec{r}}{r^2}## and this is not the same. Right?

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# A Gradient of scalar product

Have something to add?

Draft saved
Draft deleted

Loading...

Similar Threads - Gradient scalar product | Date |
---|---|

I Gradient of a scalar function | May 14, 2016 |

Direction of the maximum gradient (scalar fields) | Oct 14, 2014 |

Zero curl and gradient of some scalar potential | Nov 3, 2011 |

Scalar gradient | Dec 3, 2010 |

Tensor gradient and scalar product | Jun 5, 2010 |

**Physics Forums - The Fusion of Science and Community**