1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Gram-schmidt procedure

  1. Mar 27, 2012 #1
    1. The problem statement, all variables and given/known data

    Use the Gram-Schmidt procedure to orthonormalize the three-space basis [itex]\left|e_{1}\right\rangle = (1 + i) \widehat{i} + (1) \widehat{j} + (i) \widehat{k}, \left|e_{2}\right\rangle = (i) \widehat{i} + (3) \widehat{j} + (1) \widehat{k}, \left|e_{3}\right\rangle = (0) \widehat{i} + (28) \widehat{j} + (0) \widehat{k}.[/itex]

    2. Relevant equations

    3. The attempt at a solution

    1. To obtain the first orthonormal basis vector, normalise [itex]\left|e_{1}\right\rangle[/itex]. Therefore, [itex] \left|e^{'}_{1}\right\rangle = (1/2 + i/2) \widehat{i} + (1/2) \widehat{j} + (i/2) \widehat{k}[/itex].

    2. The projection of [itex]\left|e_{2}\right\rangle[/itex] along [itex]\left|e^{'}_{1}\right\rangle[/itex] = the scalar multiplication of [itex]\left|e^{'}_{1}\right\rangle[/itex] with the inner product of [itex]\left|e^{'}_{1}\right\rangle[/itex] and [itex]\left|e_{2}\right\rangle[/itex] = [itex] [(1/2 - i/2)(i) + (1/2)(3) + (-i/2)(1)] [(1/2 + i/2) \widehat{i} + (1/2) \widehat{j} + (i/2) \widehat{k}] = (1 + i) \widehat{i} + (1) \widehat{j} + (i) \widehat{k}[/itex].

    Subtract the projection from [itex]\left|e_{2}\right\rangle[/itex] and normalise to obtain [itex] \left|e^{'}_{2}\right\rangle = (-1/\sqrt{7}) \widehat{i} + (2/\sqrt{7}) \widehat{j} + ( (1 - i)/\sqrt{7} ) \widehat{k}[/itex]

    3. The projection of [itex]\left|e_{3}\right\rangle[/itex] along [itex]\left|e^{'}_{1}\right\rangle[/itex] = the scalar multiplication of [itex]\left|e^{'}_{1}\right\rangle[/itex] with the inner product of [itex]\left|e^{'}_{1}\right\rangle[/itex] and [itex]\left|e_{3}\right\rangle[/itex] = [itex] [0 + 14 + 0] [(1/2 + i/2) \widehat{i} + (1/2) \widehat{j} + (i/2) \widehat{k}] = (7 + 7i) \widehat{i} + (7) \widehat{j} + (7i) \widehat{k}[/itex].

    The projection of [itex]\left|e_{3}\right\rangle[/itex] along [itex]\left|e^{'}_{2}\right\rangle[/itex] = the scalar multiplication of [itex]\left|e^{'}_{2}\right\rangle[/itex] with the inner product of [itex]\left|e^{'}_{2}\right\rangle[/itex] and [itex]\left|e_{3}\right\rangle[/itex] = [itex] [0 + 56/\sqrt{7} + 0] [(-1/\sqrt{7}) \widehat{i} + (2/\sqrt{7}) \widehat{j} + ( (1 - i)/\sqrt{7} ) \widehat{k}] = (-8) \widehat{i} + (16) \widehat{j} + (8 - 8i) \widehat{k}[/itex].

    Subtract the projections from [itex]\left|e_{3}\right\rangle[/itex] and normalise to obtain [itex] \left|e^{'}_{3}\right\rangle = ( (1 - 7i)/\sqrt{130}) \widehat{i} + (5/\sqrt{130}) \widehat{j} + ( (i - 8)/\sqrt{130} ) \widehat{k}[/itex].

    I would be grateful if you could please provide comments.
     
    Last edited: Mar 27, 2012
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted