Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Gram-Schmidt Process Question

  1. Nov 16, 2005 #1


    User Avatar

    I have a question about this process.

    What will happen if this process is applied to a set of vectors {v1, v2, v3} where v1 and v2 are linearly independent, but v3 belongs to set Span(v1,v2). Will the process fail? If it fails, why does it fail?
  2. jcsd
  3. Nov 16, 2005 #2


    User Avatar

    Doesn't anyone possibly know the answer to this question? Or can anyone even give me some direciton on it?
  4. Nov 16, 2005 #3


    User Avatar
    Science Advisor
    Homework Helper

    Have you tried it out on a concrete example? What happens?
  5. Nov 17, 2005 #4
    The goal of GM is to take a nonorthogonal set of linearly independent functions and construct an orthogonal basis such that the the span of the original set is contained in the span of the orthonormalized set. This is a key ingridient to proving its most natural corollarly: that every finite dimensional inner product space admits an orthonormal basis. Note that vj is not contained in span(v1,v2,...vj-1) since (v1,...vj) is linearly independent and therefore vj is not in the span(e1,...,ej-1). If vj is in the span(v1,...vj-1) for any j, then carrying out GS merely produces a particular element which lies in the span(e1,...ej-1). It does nothing to further the purpose of GS, however; it does not destroy it, so long as your original set does contain elements which lie outside the span of its companions. But, if j=Dim(V) where V was an arbitrary space, and vk was an element of span(v1,...vk-1) for k<j, then continuing this process would result in an orthonormal set which DOES not form a basis for V, it merely spans/forms a basis or some subset/space of V.
  6. Nov 17, 2005 #5


    User Avatar
    Science Advisor

    Eventually, you will wind up having to divide by 0.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook