- #1

- 43

- 0

and i need to make a graph of tcentre(i) against t(i)..how to do this...

these variables are bold in the below code

Code:

```
!here are the declaration of variables
DIMENSION THEETA(10),DF(10),F(10),c(10),b(10),t(10),z(10),sum_1(10),Tcenter(10),r(10),w(10)
REAL K,THEETA,DF,F,c,b,sum_1,x,z,T0,Tcenter,alpha,r,q
integer t,y,p,j,l,m,s
!the assignments of constants
A = .1
H = 23.
SIGMA = 46.
Alpha=0.000012
K = 1.-(A*H/SIGMA)
EPS = .0001
! initial temperature in KELVIN
T0=250.0+273.0
!a do loop which caculates and assigns elements to the declared variables
DO N=1,10
!
! First calculating THEETA value
!
RN = N
THEETA(N)=(1.-1./(((RN-0.5)**2)*(3.142**2)*(K**2)))*3.142*(RN-0.5)
!
! Then using that THEETA value we get derivative
! converting degrees to radians
r(n)=theeta(n)*3.142/180
!derivative
DF(N) = 1./COS(r(N)**2)
!
! Then using that same THEETA value we get F
!
F(N) = r(N)*(1./K)
WRITE(*,*)r(n),df(n),f(n)
END DO
! here starts the loop for generation of roots
!newton method used
s=1
do l=1,10
do
if(s.EQ.L)q=r(s)
10 x=q-(q*(1./K)/1./COS(q**2))
if (abs(x-q).lt.eps)goto 20
q=x
goto 10
end do
20 w(l)=x
! thee roots are printed
write(*,*)'roots',w(l)
s=s+1
end do
!-----------------
!-calculation of other variables in the temperature formula
do p=1,10
C(p)=(4*sin(w(p)))/(2*(w(p))-sin(2*(w(p))))
B(p)=(w(p)*alpha**2)/(a**2)
write(*,*)c(p),b(p)
end do
do i=0,9
t(i)=i*60
[B]print*,'time',t(i)[/B]
enddo
!- this loop calculates the temperature at the centre for each value of time
do j=1,10
y=j-1
z(j)=-(b(j)*t(y))
sum_1(j)=(C(j)*z(j))
Tcenter(j)=T0*((a*h)/(sigma))*sum_1(j)
write(*,*)'temperature at centre',[B]Tcenter(j)[/B]
end do
end
```