Gravitation problem -- Binary star system

In summary: The equation you are mentioning is used to represent the moment of a force. It is simply a way of representing the mass (m) and distance (d) of the point of application of the force. It is not a simplification of anything.
  • #36
Point C is the center of mass of the system. It's the fixed point around which both bodies orbit.

Fig1.png
 
Physics news on Phys.org
  • #37
I meant Is there a body at point C? star...planet?
 
  • #38
gneill said:
Point C is the center of mass of the system. It's the fixed point around which both bodies orbit.

View attachment 92177
I meant is there a body at point c?
 
  • #39
Angie Tom said:
I meant is there a body at point c?
No, it's empty space.

The center of mass of two spherical masses lies along the line joining them, but there's no object associated with that center of mass: it's a mathematical point.
 
  • #40
Okay
gneill said:
No, it's empty space.

The center of mass of two spherical masses lies along the line joining them, but there's no object associated with that center of mass: it's a mathematical point.
Okay, so this means that the gravitational force is between the 2 masses and the centripetal force is directed from each mass to c right?
 
  • #41
Angie Tom said:
Okay

Okay, so this means that the gravitational force is between the 2 masses and the centripetal force is directed from each mass to c right?
Correct.
 
  • #42
gneill said:
Correct.
THANKS A MILLON
 
  • #43
Why does the normal on a mass have different values at the pole and at the equator?
 
  • #44
Angie Tom said:
Why does the normal on a mass have different values at the pole and at the equator?
This looks like a new question. Start a new thread for it, and use the template that will be provided in the edit window after hitting the "Post New Thread" icon.
 
  • #45
Angie Tom said:
Okay

Okay, so this means that the gravitational force is between the 2 masses and the centripetal force is directed from each mass to c right?
I wouldn't word it that way. The mass centres and c are in a straight line, so a direction 'towards c' is the same as 'towards the other star's centre'. Besides, it is important to remember that centripetal force is a resultant force. Your wording might give the false impression that each star is somehow attracted to the common mass centre.

If two stars are on parallel and opposite courses, at right angles to the line joining them at some instant, each experiences attraction towards the other star so accelerates in that direction. Since that is at right angles to their directions of motion, that results in a change of direction, not a change in speed. That is, it will lead them to start to revolve around some points (not necessarily the same point) on the line joining them.
This situation may be transient; a moment later their arrangement no longer matches those conditions.

If the distance between them, their speeds and their masses are in the right relationship to each other, that point will be, for both, the common mass centre. If so, the arrangement is dynamically stable, i.e. they will continue to satisfy all thes conditions and continue to orbit around that common mass centre. But the attaction is always to the mass centre of the other star.

One more point, just to be clear. That each star is attracted to the mass centre of the other is a special feature of spherically symmetric bodies. In reality, each atom of each star is attracted to each atom of the other. But if each star is made of concentric spherical shells, each of uniform mass density, it turns out that the net attraction of each atom of one star is towards the mass centre of the other. The situation would be far more complex with two amorphous lumps of rock orbiting each other.
 
  • Like
Likes Bandersnatch
  • #46
haruspex said:
I wouldn't word it that way. The mass centres and c are in a straight line, so a direction 'towards c' is the same as 'towards the other star's centre'. Besides, it is important to remember that centripetal force is a resultant force. Your wording might give the false impression that each star is somehow attracted to the common mass centre.

If two stars are on parallel and opposite courses, at right angles to the line joining them at some instant, each experiences attraction towards the other star so accelerates in that direction. Since that is at right angles to their directions of motion, that results in a change of direction, not a change in speed. That is, it will lead them to start to revolve around some points (not necessarily the same point) on the line joining them.
This situation may be transient; a moment later their arrangement no longer matches those conditions.

If the distance between them, their speeds and their masses are in the right relationship to each other, that point will be, for both, the common mass centre. If so, the arrangement is dynamically stable, i.e. they will continue to satisfy all thes conditions and continue to orbit around that common mass centre. But the attaction is always to the mass centre of the other star.

One more point, just to be clear. That each star is attracted to the mass centre of the other is a special feature of spherically symmetric bodies. In reality, each atom of each star is attracted to each atom of the other. But if each star is made of concentric spherical shells, each of uniform mass density, it turns out that the net attraction of each atom of one star is towards the mass centre of the other. The situation would be far more complex with two amorphous lumps of rock orbiting each other.
This is really helpful! Thanks a lot :D
 

Similar threads

  • Introductory Physics Homework Help
Replies
3
Views
2K
  • Introductory Physics Homework Help
Replies
5
Views
1K
  • Astronomy and Astrophysics
Replies
14
Views
666
Replies
4
Views
1K
Replies
5
Views
1K
  • Introductory Physics Homework Help
Replies
6
Views
1K
  • Introductory Physics Homework Help
Replies
5
Views
984
  • Introductory Physics Homework Help
Replies
6
Views
607
  • Introductory Physics Homework Help
Replies
8
Views
2K
  • Introductory Physics Homework Help
Replies
2
Views
1K
Back
Top