- #1

- 40

- 0

I'm not sure if I did this right, here's what I did

z = distance from point to center of cylinder

r = distance from point to vertical center of cylindrical shell element

a = radius of shell element

(these three lines form a triangle with r as the hypotenuse)

[tex] \theta [/tex] = angle between r and z

R = radius of cylinder M = mass of cylinder [tex] \rho [/tex] = density of cylinder V = volume of cylinder L = length of cylinder

[tex] dg = \frac {-GdM} {r^2} = \frac {-G \rho dV} {r^2} [/tex]

[tex] dV = 2 \pi aL da [/tex]

[tex] g_x = g_y = 0 [/tex] [tex] g_z = gcos( \theta) [/tex]

[tex] cos( \theta) = \frac {z} { \sqrt {z^2 + a^2}} [/tex]

[tex] g = \int_{0}^{R} dgcos( \theta) = -2 \pi G \rho l \int _{0}^{R} \frac {a z da} {(z^2 + a^2)^{3/2}} [/tex]

[tex] g = 2 \pi G \rho lz ( \frac {1} { \sqrt {z^2 + a^2}})_{0}^{R} [/tex]

[tex] g = 2 \pi G \rho l (\frac {z} { \sqrt {z^2 + R^2}} - 1) [/tex]

Is this right?