Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Gravitational Mass

  1. Jan 26, 2007 #1
    Does gravitational mass increase as inertial mass does in relativistic situations? Or does GR make this idea irrelevant?
     
  2. jcsd
  3. Jan 26, 2007 #2
    Inertial mass does not "increase in relativistic situations". Neither does gravitational mass.
     
  4. Jan 26, 2007 #3

    disregardthat

    User Avatar
    Science Advisor

    May I ask what that is increasing then?
     
  5. Jan 26, 2007 #4
  6. Jan 26, 2007 #5
    Relativistic mass.
     
  7. Jan 27, 2007 #6

    disregardthat

    User Avatar
    Science Advisor

    Has relativistic mass any effect of an object?

    Or is it just to explain why it is harder to accelerate an object at high velocities?
     
  8. Jan 27, 2007 #7

    Hootenanny

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    This has been discussed to tedium in the SR forums; an FAQ exists which discusses it further.
     
  9. Jan 27, 2007 #8
    Yes. It does. For the calculation which shows this please see

    http://www.geocities.com/physics_world/gr/force_falling_particle

    See also "Measuring the active gravitational mass on a moving object," by D.W. Olson and R.C. Guarino, Am. J. Phys., 53(7), July 1985. The abstract reads
    In the first case above is the situation of particle which is falling in the field of a stationary planet while in the later situation the object is falling in a gravitational field of a moving planet.

    Pete
     
  10. Jan 27, 2007 #9

    Chris Hillman

    User Avatar
    Science Advisor

    Kinetic energy and a link

    Just wanted to point out that this is one example where it would be quite confusing to speak of "relativistic mass" (bad terminology on many levels) instead of "relativistic kinetic energy" (good terminology).

    A WP article I wrote on the Aichelburg-Sexl impulsive pp wave, an exact axisymmetric vacuum solution which has the character of a gravitational wave, but whcih arises from a (not uniqely defined) limiting process called an "ultrarelativistic boost of the Schwarzschild vacuum" (see http://en.wikipedia.org/w/index.php?title=Aichelburg-Sexl_ultraboost&oldid=45333920 )may suggest to the original poster how he might wish to rephrase his question.

    (As usual, note that I linked to the last version I edited; more recent versions might be somewhat better or might be much worse!)

    The AS pp wave has some interesting features: its curvature is concentrated in a single wavefront, and within that wavefront it falls of much less rapidly than does the "Coulomb tidal force field" which is characteristic of slowly moving and approximately spherically symmetric massive objects.

    Note well: considering an ultra-relativistic is not appropriate for studying the gravitational field of a massive object which is moving at a nonrelativistic velocity with respect to the observer of interest, such as a planet moving at a nonrelativistic velocity with respect the observer of interest. Rather, the idea is that you can treat a massive but very rapidly moving Schwarzschild object either in the obvious way--- write down the parametrized geodesic of your ultrarelativistic observer, and compute the tidal tensor in his frame--- or you can take a stationary observer in the AS model, who thinks he is in flat spacetime until the wave whizzes by him at the speed of light. IOW, the AS model is only an approximation, but a very suggestive one.
     
    Last edited: Jan 27, 2007
  11. Jan 27, 2007 #10


    Yes, of course. Unfortunately certain people are still stuck on "relativistic mass", the notion that "refuses" to go away. It is really unfortunate that people still attribute physical meaning to the mathematical entity with no ulterior physical meaning [tex]\gamma*m_0[/tex] that appears the the relativistic momentum [tex]\gamma*m_0*v[/tex] and in the relativistic energy [tex]\gamma*m_0*c^2[/tex]. It would be nice if all textbooks standartised on the use of proper mass [tex]m_0[/tex] ONLY and put an end to the accursed "relativistic mass".
     
    Last edited: Jan 27, 2007
  12. Jan 27, 2007 #11
    Can an ultra-relativistic mass turn into a black hole?
     
  13. Jan 27, 2007 #12

    If I stick some paper wings to an elephant, will it learn how to fly? Or will you need to teach it?
     
  14. Jan 27, 2007 #13
    That question belongs more to biology, not physics.
     
  15. Jan 27, 2007 #14

    jtbell

    User Avatar

    Staff: Mentor

  16. Jan 27, 2007 #15
    Interestingly on the referenced webpage is the following statement:

    What momentum is ignored in the Schwarzschild solution? :confused:
     
  17. Jan 27, 2007 #16

    pervect

    User Avatar
    Staff Emeritus
    Science Advisor

    A key point (IMO THE key point) in this derivation is the defintion of "gravitational force" in

    http://www.geocities.com/physics_world/gr/grav_force.htm

    It seems to me that Pete basically admits in this webpage that his defintion is not covariant - his statement that makes me say this is

    G being the "gravitational force".

    I do not believe that it has been demonstrated that this definition of "gravitational force" on this webpage has been proposed or adopted by any author other than Pete. Note specifically that it is different from the defintion offered by Olson and Guaranio (also cited).

    The issue of whether or not the "gravitational force" is covariant may seem abstract, but it is very important. A non-covariant defintion, among other effects, means that the defintion of "force" depends on the specific choice of coordinates by the observer!

    [add]I should add that there is a reasonably well-accepted defintion of "gravitational force" for stationary observers or even observers moving at low velocities. (See for instance the gravitoelectric field in GEM, i.e. http://arxiv.org/abs/gr-qc/9912027.pdf)

    There are some significant defintional problems for even defining "gravitational force" for rapidly moving observers.
     
    Last edited: Jan 27, 2007
  18. Jan 27, 2007 #17
    Objects do not have any increased tendency to form black holes due to their extra energy of motion. In a frame of reference stationary with respect to the object, it has only rest mass energy and will not form a black hole unless its rest mass is sufficient. If it is not a black hole in one reference frame, then it cannot be a black hole in any other reference frame.
     
  19. Jan 27, 2007 #18
    And It may also seem ridicilous.Especially having in mind covariant spirit of General relativity.
     
  20. Jan 27, 2007 #19

    pervect

    User Avatar
    Staff Emeritus
    Science Advisor

    If you are suggesting that non-covariant definitions of force are "ridicilous", I would say that you are on the right general track, though it seems a bit harsh put that way.

    And excuse me, but I can't help but observe - isn't it a bit ridicilous to misspell ridiculous ? :-)

    Anyway, I hope we can keep this thread focused on the issues.
     
    Last edited: Jan 27, 2007
  21. Jan 27, 2007 #20
    If certain authors suggesting a non-covariant definition of forces,I think they are on the right track to return to pre Maxwell time era where cog wheels ruled.
    May covarince long live 'coz covarince rulz ("rulz" misspelld intentionaly :smile:)
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Gravitational Mass
  1. Gravitational mass (Replies: 2)

Loading...