1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Gravitational potential energy

  1. Sep 18, 2010 #1
    1. The problem statement, all variables and given/known data

    Derive the gravitational potential energy from Newton's law.

    2. Relevant equations

    [tex]
    \mathbf{F} = -G \frac{m_1m_2}{\left|\mathbf{r}\right|^3} \mathbf{r}
    [/tex]

    [tex]
    W = \int_A^B \mathbf{F} \cdot{} d\mathbf{r}
    [/tex]

    [tex]
    \Delta{}U = W
    [/tex]

    3. The attempt at a solution
    I can use the scalar version of the law, but I want to do it with the vector form.
    So, first some easy substitution:

    [tex]
    W = \int_A^B \mathbf{F} \cdot{} d\mathbf{r}
    = -Gm_1m_2 \int_A^B \frac{\mathbf{r}\cdot{}d\mathbf{r}}{\left|\mathbf{r}\right|^3}
    = Gm_1m_2 \int_A^B \frac{r_xdr_x + r_ydr_y + r_zdr_z}{\left|\mathbf{r}\right|^3}
    [/tex]

    [tex]
    = -Gm_1m_2 \left\{
    \int_A^B \frac{r_x}{\left|\mathbf{r}\right|^3} dr_x +
    \int_A^B \frac{r_y}{\left|\mathbf{r}\right|^3} dr_y +
    \int_A^B \frac{r_z}{\left|\mathbf{r}\right|^3} dr_z
    \right\}
    [/tex]

    Now take one integrand, for example the x part,

    [tex]
    \int_A^B \frac{r_x}{\sqrt{r_x^2 + r_y^2 + r_z^2}^3} dr_x =
    \int_A^B r_x \left( r_x^2 + r_y^2 + r_z^2 \right)^{-\frac{3}{2}} dr_x
    [/tex]

    and perform substitution:

    [tex]
    t = r_x^2 + r_y^2 + r_z^2
    [/tex]
    [tex]
    dt = 2r_x dr_x
    [/tex]
    [tex]
    \frac{dt}{2} = r_x dr_x
    [/tex]

    That yields:

    [tex]
    \frac{1}{2} \int_A^B t^{-\frac{3}{2}} dt_x =
    \left[ -t^{-\frac{1}{2}} \right]_A^B =
    \left[ -\frac{1}{\sqrt{r_x^2 + r_y^2 + r_z^2}} \right]_A^B =
    \left[ -\frac{1}{\left|\mathbf{r}\right|} \right]_A^B =
    -\left( \frac{1}{\left|\mathbf{B}\right|} - \frac{1}{\left|\mathbf{A}\right|} \right)
    [/tex]

    Doing the same for other two integrands and plunging them back:

    [tex]
    W = -Gm_1m_2 \left\{
    -\left( \frac{1}{\left|\mathbf{B}\right|} - \frac{1}{\left|\mathbf{A}\right|} \right)
    -\left( \frac{1}{\left|\mathbf{B}\right|} - \frac{1}{\left|\mathbf{A}\right|} \right)
    -\left( \frac{1}{\left|\mathbf{B}\right|} - \frac{1}{\left|\mathbf{A}\right|} \right)
    \right\}
    [/tex]

    And finally

    [tex]
    W = 3Gm_1m_2 \left(
    \frac{1}{\left|\mathbf{B}\right|} - \frac{1}{\left|\mathbf{A}\right|}
    \right)
    [/tex]

    Now if we take B at infinity, the potential energy will be

    [tex]
    U = - 3G\frac{m_1m_2}{\left|\mathbf{r}\right|}
    [/tex]

    which is three times as large as it should be. Don't tell me, let me guess. There's an error somewhere up there. *sigh*
    Any help would be highly appreciated.
     
    Last edited: Sep 18, 2010
  2. jcsd
  3. Sep 18, 2010 #2
    This is where you were wrong:
    t is a multi-variable function, therefore: [tex]dt = 2r_xdr_x+2r_ydr_y+2r_zdr_z[/tex]

    A suggestion: [tex]2\vec{r}d\vec{r} = d(\vec{r}^2) = d(r^2)[/tex]
     
  4. Sep 18, 2010 #3
    Thanks, hikaru!
    I knew I should have read that book about multivariable calculus.
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook