Gravity contracts length

am i missing something here?
we have a circle: [tex](x-h)^2+(y-k)^2=r^2[/tex] where (h,k) is the center and r is the radius. we now spin the circle about an axis that is perpendicular to the plane on which the circle lies and it runs through the center of said circle. gravity contracts length (and my the equivelance principle, so does acceleration), so as the 1-sphere spins about the axis, the distance between any two points on it decreases while the radius stays the same. since [tex]\pi=\frac{c}{2r}[/tex], where c is circumference and r is radius, [tex]\pi[/tex] no longer is a constant. the circle shrinks, but the radius stays the same. what is going on? does the circle turn into a cone?
 
Last edited:
i just found out that the equivelence princliple doesn't apply here.
 
1,222
2
You have stumbled upon a fanatastic paradox of special relativity

As it appears in the history books, this is the very same case that lead Einstein to consider non-euclidean geometries in the physical universe.
 

Related Threads for: Gravity contracts length

  • Posted
Replies
5
Views
5K
  • Posted
Replies
4
Views
2K
  • Posted
Replies
12
Views
2K
  • Posted
Replies
3
Views
1K
  • Posted
Replies
5
Views
1K
  • Posted
Replies
2
Views
17K
Replies
4
Views
260
  • Posted
Replies
15
Views
5K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads

Top