Greatest lower bound

  • Thread starter steven187
  • Start date
hello all

I know this might be a simple question to ask, but i want to find other ways of proving it anyway here we go
propve that if A is a subset of R and is non empty and bounded below, then it has a greatest lower bound.

This is how i did it:

let b be a lower bound of A. then for every a an element of A b<=a so -a<=-b. now we notice that -b is an upper bound for -A, where -A={-x,x an element ofA}. since -A is non empty and it is bounded above then by the least upper bound axiom -A has a least upper bound , lets call this least upper bound -L , since -L is the least upper bound of -A, we must have -L<=-b or b<=L. and so this is true for any b which is a lower bound of A and hence L must be the greatest lower bound of A

is there another method to do this problem if not is there anyway of simplyfying this proof?

thanxs
 
R

rachmaninoff

It's the shortest proof I can think of, if you're already given the greatest upper bound axiom.
 

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads

Top