The solution of the problem(adsbygoogle = window.adsbygoogle || []).push({});

[itex]\left(\nabla^2 + k^2 \right)\psi(\mathbf{r})=f(\mathbf{r})[/itex] is, using green function

[itex] \psi(\mathbf{r})=-\int G(\mathbf{r},\mathbf{r}_1) f(\mathbf{r})[/itex]

where for the tridimensional case the Green function is

[itex]G(\mathbf{r},\mathbf{r}_1)=\frac{e^{ik\vert\mathbf{r}-\mathbf{r}_1\vert}}{4\pi \vert \mathbf{r}-\mathbf{r}_1\vert}[/itex]

Why if I put [itex]f(\mathbf{r})=h(x)\delta(y-y_1)\delta(z-z_1)[/itex] in the second equation I find

[itex]G(\mathbf{r},\mathbf{r}_1)=\frac{e^{ik\vert x-x_1\vert}}{4\pi \vert \mathbf{x}-\mathbf{x}_1\vert}[/itex]

that it isn't the correct Green function for the monodimensional case, that is

[itex]G(\mathbf{r},\mathbf{r}_1)=\frac{i}{2 k}e^{ik\vert x-x_1\vert}[/itex]

?Can you help me please?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Green function Helmholtz differential equation, monodimensional limit

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

Loading...

Similar Threads for Green function Helmholtz |
---|

A Inverse ODE, Green's Functions, and series solution |

A Green's function not self adjoint for self adjoint ODE |

A Applying boundary conditions on an almost spherical body |

A Green's Function and Variation of Parameters |

A Green's Function ODE BVP |

**Physics Forums | Science Articles, Homework Help, Discussion**