Group Action of S3 on a set of ordered pairs

  • Thread starter Math Amateur
  • Start date
  • Tags
    Group Set
In summary, Dummit and Foote Section 4.1 Group Actions and Permutation Representations, Exercise 4 asks to find the orbits of S_3 on the set \Omega of ordered pairs: {(i,j) | 1≤ i,j ≤ 3} by defining the group action as σ((i,j)) = (σ(i), σ(j)). The first orbit of S_3 containing (1,1) is {(1,1), (2,2), (3,3)}, and the orbit containing (1,2) is {(1,2), (1,3), (2,1), (2,3), (3,1), (3,2)}. This shows that the equivalence
  • #1
Math Amateur
Gold Member
MHB
3,990
48
Dummit and Foote Section 4.1 Group Actions and Permutation Representations, Exercise 4 (first part of exercise) reads:

Let [itex] S_3 [/itex] act on the set [itex] \Omega [/itex] of ordered pairs: {(i,j) | 1≤ i,j ≤ 3} by σ((i,j)) = (σ(i), σ(j)). Find the orbits of [itex] S_3 [/itex] on [itex] \Omega [/itex]

================================================================

So, [itex] S_3 [/itex] = { 1, (2 3), (1 3), (1 2), (1 2 3), (1 3 2) }

Now my first calculations follow:

The orbit of [itex] S_3 [/itex] containing (1,1) = {g[itex] \star [/itex](1,1) | g [itex] \in [/itex] [itex] S_3 [/itex]}

Thus calculating elements of this orbit:

(1)[itex] \star [/itex](1,1) = [itex] {\sigma}_1[/itex](1,1) = ([itex] {\sigma}_1[/itex](1), [itex] {\sigma}_1[/itex](1)) = (1,1)

(2 3)[itex] \star [/itex](1,1) = [itex] {\sigma}_{23}[/itex](1,1) = ([itex] {\sigma}_{23}[/itex](1), [itex] {\sigma}_{23}[/itex](1)) = (1,1)

(1 3)[itex] \star [/itex](1,1) = [itex] {\sigma}_{13}[/itex](1,1) = ([itex] {\sigma}_{13}[/itex](1), [itex] {\sigma}_{13}[/itex](1)) = (3,3)

(1 2)[itex] \star [/itex](1,1) = [itex] {\sigma}_{12}[/itex](1,1) = ([itex] {\sigma}_{12}[/itex](1), [itex] {\sigma}_{12}[/itex](1)) = (2,2)

(1 2 3)[itex] \star [/itex](1,1) = [itex] {\sigma}_{123}[/itex](1,1) = ([itex] {\sigma}_{123}[/itex](1), [itex] {\sigma}_{123}[/itex](1)) = (2,2)

(1 3 2)[itex] \star [/itex](1,1) = [itex] {\sigma}_{132}[/itex](1,1) = ([itex] {\sigma}_{132}[/itex](1), [itex] {\sigma}_{132}[/itex](1)) = (3,3)

Thus the orbit of [itex] S_3 [/itex] = {(1.1), (2,2), (3,3)}

Next orbit:

The orbit of [itex] S_3 [/itex] containing (1,2) = {g[itex] \star [/itex](1,2) | g [itex] \in [/itex] [itex] S_3 [/itex]}

(1)[itex] \star [/itex](1,2) = [itex] {\sigma}_1[/itex](1,2) = ([itex] {\sigma}_1[/itex](1), [itex] {\sigma}_1[/itex](2)) = (1,2)

(2 3)[itex] \star [/itex](1,1) = [itex] {\sigma}_{23}[/itex](1,2) = ([itex] {\sigma}_{23}[/itex](1), [itex] {\sigma}_{23}[/itex](2)) = (1,3)

(1 3)[itex] \star [/itex](1,2) = [itex] {\sigma}_{13}[/itex](1,2) = ([itex] {\sigma}_{13}[/itex](1), [itex] {\sigma}_{13}[/itex](2)) = (3,2)

(1 2)[itex] \star [/itex](1,2) = [itex] {\sigma}_{12}[/itex](1,2) = ([itex] {\sigma}_{12}[/itex](1), [itex] {\sigma}_{12}[/itex](2)) = (2,1)

(1 2 3)[itex] \star [/itex](1,2) = [itex] {\sigma}_{123}[/itex](1,2) = ([itex] {\sigma}_{123}[/itex](1), [itex] {\sigma}_{123}[/itex](2)) = (2,3)

(1 3 2)[itex] \star [/itex](1,2) = [itex] {\sigma}_{132}[/itex](1,2) = ([itex] {\sigma}_{132}[/itex](1), [itex] {\sigma}_{132}[/itex](2)) = (3,1)

Thus the orbit of [itex] S_3 [/itex] containing (1,2) = {(1,2), (1,3), (2,1), (2,3), 3,1), 3,2)}

===================================================================

Could someone please indicate to me that the above calculations are proceeding correctly ( I am a math hobbyist working alone so I would appreciate someone indicating that my approach is correct)

Dummit and Foote mention that a group acting on a set A partitions that set into disjoint equivalence classes under the action of G

I was somewhat alarmed that I have, for the orbits, one set of 3 elements and another set of 6 elements.Previously I was under the impression (delusion??) that an equivalence relation partitioned a set into equal equivalence classes. The above tells me that the equivalence classes do not have to have the same number of elements - is that correct - or are my calculations of the orbits wrong?

Peter
 
Physics news on Phys.org
  • #2
Everyhting here is correct!

And indeed, the equivalence classes of a relation do not need to partition a set in sets of equal size. I'm glad to free you from this delusion :smile:
 
  • #3
the idea you had (of the equivalence classes being the same size) is only true for a group congruence (equivalence in G "mod H").

what happens is that the presence of a group multiplication on a set, introduces a certain kind of regularity on that set. for an ordinary set (with no group product), equivalence classes can be any size. imagine we have the following function:

f: A --->A, where A = {a,b,c}, given by:

f(a) = a
f(b) = a
f(c) = b

we can define a relation on A by:

x~y if f(x) = f(y).

note that x~x since f(x) = f(x), and if x~y, then f(x) = f(y), so f(y) = f(x), so y~x, and finally, if x~y, and y~z, then f(x) = f(y), and f(y) = f(z), so f(x) = f(z), and thus x~z.

so ~ is indeed an equivalence relation, but:

[a] = {a,b} [c] = {c} (a and b share the same image under f, namely a, but c is the only element in A with f(x) = b), and the equivalence classes are not the same size.

the above example is not a far-fetched one, many equivalence relations on a set arise in just such a way (and in fact, given an equivalence relation on a set, one can actually construct a function which produces that same partition). for your set Ω, we can do this like so:

f(1,1) = (1,1)
f(2,2) = (1,1)
f(3,3) = (1,1)
f(1,2) = (1,2)
f(1,3) = (1,2)
f(2,3) = (1,2)
f(2,1) = (1,2)
f(3,1) = (1,2)
f(3,2) = (1,2)

f is clearly a function Ω→Ω, and the relation (a,b)~(c,d) if f(a,b) = f(c,d) gives the same equivalence classes as your orbits.

(very nice post, by the way, so clear).
 
  • #4
Thanks Deveno

Really informative as usual!

Peter
 
  • #5
Thanks

Peter
 

What is the definition of a group action of S3 on a set of ordered pairs?

A group action of S3 on a set of ordered pairs is a mathematical operation that consists of a permutation on the elements of a set of ordered pairs, where the permutation is based on the elements of the symmetric group S3.

What is the purpose of studying group actions of S3 on a set of ordered pairs?

The study of group actions of S3 on a set of ordered pairs allows for a deeper understanding of abstract algebra and its applications in various fields such as geometry, physics, and computer science.

How do you determine if a group action of S3 on a set of ordered pairs is faithful?

A group action is considered faithful if every element of the group S3 has a distinct effect on the set of ordered pairs. In other words, no two elements of S3 produce the same permutation on the set of ordered pairs.

What is the significance of the symmetric group S3 in group actions on a set of ordered pairs?

The symmetric group S3 is significant in group actions on a set of ordered pairs because it represents all possible ways to permute three elements, making it a fundamental building block for understanding larger groups and their actions.

Can a group action of S3 on a set of ordered pairs be transitive?

Yes, a group action of S3 on a set of ordered pairs can be transitive. This means that for any two ordered pairs in the set, there exists a permutation in S3 that maps one pair to the other. In other words, the group action can move any ordered pair to any other ordered pair in the set.

Similar threads

  • Linear and Abstract Algebra
Replies
1
Views
1K
  • Linear and Abstract Algebra
Replies
27
Views
9K
  • Linear and Abstract Algebra
Replies
9
Views
1K
  • Mechanical Engineering
Replies
9
Views
1K
Replies
5
Views
2K
  • Math Proof Training and Practice
Replies
8
Views
1K
  • Linear and Abstract Algebra
Replies
3
Views
968
  • Linear and Abstract Algebra
Replies
11
Views
4K
Replies
27
Views
929
  • Linear and Abstract Algebra
Replies
5
Views
1K
Back
Top