- #1

- 18

- 0

## Main Question or Discussion Point

Let g= [tex] \left( \begin{array}{ccccc}

1 & 2 & 3 & 4 & 5 \\

2 & 5 & 4 & 1 & 3 \end{array} \right)

[/tex] be an element of [tex]S_{5}[/tex] and a set S={1,2,3}.

The theorem of a group action says "If a group G acts on a set, this action induces a homomorphism G->A(S), A(S) is the group of all permutations of the set S."

When I apply the above action g on a set S, [tex]1 \mapsto 2, 2 \mapsto 5, 3 \mapsto 4 [/tex], which is not a permutation of a set S.

A group action on a set possibly does not induce a set of its own permutation on set S?

Any opinion will be appreciated.

1 & 2 & 3 & 4 & 5 \\

2 & 5 & 4 & 1 & 3 \end{array} \right)

[/tex] be an element of [tex]S_{5}[/tex] and a set S={1,2,3}.

The theorem of a group action says "If a group G acts on a set, this action induces a homomorphism G->A(S), A(S) is the group of all permutations of the set S."

When I apply the above action g on a set S, [tex]1 \mapsto 2, 2 \mapsto 5, 3 \mapsto 4 [/tex], which is not a permutation of a set S.

A group action on a set possibly does not induce a set of its own permutation on set S?

Any opinion will be appreciated.