Let G be a finite group. For all elements of G (the following holds: g^2=e(the idendity.) So , all except the idendity have order two.(adsbygoogle = window.adsbygoogle || []).push({});

Proof that G is isomorphic to a finite number of copies of Z_2 ( the group of adittion mod 2, Z_2 has only two elements (zero and one).)

I can try to tell you what I have already tried, but please, can someone give a hint in the right direction..? I basically need a bijection from G to (Z_2)^m, but no idea how I can do it( In particular: they should have the same size as they are finite.)

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Group theory, isomorphism

**Physics Forums | Science Articles, Homework Help, Discussion**