- #1

- 78

- 0

## Main Question or Discussion Point

I need help here: Suppose that G is a group in which every non-identity element has order two. Show that G is commutative.

Also, Consider Zn = {0,1,....,n-1}

a. show that an element k is a generator of Zn if and only if k and n are relatively prime.

b. Is every subgroup of Zn cyclic? If so, give a proof. If not, provide an example.

Also, Consider Zn = {0,1,....,n-1}

a. show that an element k is a generator of Zn if and only if k and n are relatively prime.

b. Is every subgroup of Zn cyclic? If so, give a proof. If not, provide an example.