- #1
- 391
- 0
let be the integral equation
[tex] h(x)= \int_{0}^{\infty} \frac{dy}{y}K(y/x)f(y) [/tex]
here the kernel is always a positive , then if [tex] h(x)=O(x^{a}) [/tex] and the integral
[tex] \int_{0}^{\infty} \frac{dy}{y}K(y)y^{a} [/tex] exists and is a positive real number then also [tex] f(x)= O(x^{a}) [/tex]
[tex] h(x)= \int_{0}^{\infty} \frac{dy}{y}K(y/x)f(y) [/tex]
here the kernel is always a positive , then if [tex] h(x)=O(x^{a}) [/tex] and the integral
[tex] \int_{0}^{\infty} \frac{dy}{y}K(y)y^{a} [/tex] exists and is a positive real number then also [tex] f(x)= O(x^{a}) [/tex]