Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Gyromagnetic ratio

  1. Sep 25, 2005 #1

    quasar987

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Hi,

    The gyromagnetic ratio is the ratio of the magnetic dipole moment to the angular momentum.

    I really don't get how the fact that the gyromagnetic ratio of a rotating circular loop of mass M and charge Q is g = Q/2M implies that the gyromagnetic ratio of a uniform rotating spere is also g = Q/2M!
     
  2. jcsd
  3. Sep 25, 2005 #2

    Tide

    User Avatar
    Science Advisor
    Homework Helper

    Points to ponder:

    (a) Does the gyromagnetic ratio of the rotating loop depend on the size of the loop?

    (b) Can you determine the dipole moment of a rotating spherically symmetric charge distribution by summing over loops?
     
  4. Sep 25, 2005 #3

    quasar987

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    No.

    This is exactly what's throwing me off! In principle, since the sphere could be considered as an infinity of circular loops of different sizes, its dipole moment is the sum of all those. But since the sphere is uniform, the ratio of its mass to its charge is the same at every point of it. Hence, the dipole moment of each loops is the same at Q/2M, making the total dipole of the sphere infinite!
     
  5. Sep 25, 2005 #4

    Dr Transport

    User Avatar
    Science Advisor
    Gold Member

    The dipole moment for a charged rotating sphere is a problem in Griffths, Wangsness and Jackson amongst other texts. It is not infinite, look in some these texts to get an idea on how to calculate it. I think that the easiest manner to go about it is to start with the vector potential for a rotating sphere and go on from there.
     
  6. Sep 25, 2005 #5

    quasar987

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Griffiths says:

    The result of part (a) was of course that g = Q/2M for a ring.

    So he seems to be saying that just by reasoning, we can determine that it is the same. I exposed my reasoning to you; what is flawed in it?
     
  7. Sep 26, 2005 #6

    quasar987

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    I did it by integration.

    Does anyone know what is the argument that allows one to conclude that the gyromagnetic ratio of any solid of revolution is Q/2M ?
     
  8. Sep 27, 2005 #7

    Tide

    User Avatar
    Science Advisor
    Homework Helper

    You should have gotten a clue from the work you did for the sphere. The integrals for the magnetic moment and angular momentum cancel when you form the ratio! :)
     
  9. Sep 27, 2005 #8

    Gokul43201

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    No, each loop only has some infinitesimal charge dQ and infinitesimal mass dM.
     
  10. Sep 27, 2005 #9

    quasar987

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Sure but I'm convinced that nevertheless, their ratio is the same:

    [tex]\frac{dQ}{dM} = \frac{dQ/dV}{dM/dV} = \frac{\rho_q}{\rho_m} = \frac{Q}{M}[/tex]
     
  11. Sep 27, 2005 #10

    quasar987

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    For the sphere ok. But that seemed almost like magic you know. There are all these constant that come in from integration and they end up being 1/2 at the end. How do I know it wasn't a big coincidence and that for another random revolution figure, it will be different?

    Edit: Ok, now I see it from the integral, by generalizing to an arbitrary volume of revolution, that it will always give Q/2M. Thanks for the hint Tide.
     
    Last edited: Sep 27, 2005
  12. Sep 27, 2005 #11

    Tide

    User Avatar
    Science Advisor
    Homework Helper

    Quasar,

    Any time! :)
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Gyromagnetic ratio
  1. Transformers ratio. (Replies: 1)

  2. Damping Ratio (Replies: 1)

Loading...