Find the eigenvalues of the hamiltonian(adsbygoogle = window.adsbygoogle || []).push({});

[tex]

H=a(S_A \cdot S_B+S_B \cdot S_C+S_C \cdot S_D+S_D \cdot S_A)

[/tex]

where S_A, S_B, S_C, S_D are spin 1/2 objects

_________________________

I rewrite it as

[tex]

H=(1/2)*a*[(S_A+S_B+S_C+S_D)^2-(S_A+S_C)^2-(S_B+S_D)^2]

[/tex]

then i define

[tex]

J_1=S_A+S_B+S_C+S_D

[/tex]

[tex]

J_2=S_A+S_C

[/tex]

[tex]

J_3=S_B+S_D

[/tex]

and uses

[tex]

J^2_i |j_1j_2j_3;m_1m_2m_3> = (h^2) j_i(j_i+1)|j_1j_2j_3;m_1m_2m_3>

[/tex]

which gives the energies

[tex]

E(j_1,j_2,j_3)=(h^2/2)*a*[j_1(j_1+1)-j_2(j_2+1)-j_3(j_3+1)]

[/tex]

Where j_1 is addition of four angular momentum of 1/2 which gives it values of 0 1, 2 and in the same way j_2 and j_3 have values of 0 1.

Am i doing this the right way? It doesnt feel so

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Hamiltonian eigenvalues

**Physics Forums | Science Articles, Homework Help, Discussion**