(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Using spherical coordinates [tex](r, \theta, \phi)[/tex], obtain the Hamiltonian and the Hamilton equations of motion for a particle in a central potential V(r).

Study how the Hamilton equations of motion simplify when one imposes the initial conditions [tex]p_{\phi}(0) = 0[/tex] and [tex]\phi (0) = 0[/tex]

3. The attempt at a solution

I have obtained a Hamiltonian

[tex]H = \frac{1}{2m} \left( p_r^2 + \frac{p_{\theta}^2}{r^2} + \frac{p_{\phi}^2}{r^2 \sin^2{(\theta)}} \right) + V(r)[/tex]

and from this also the equations of motion

[tex]\dot{r} = \frac{p_r}{m}[/tex]

[tex]\dot{\theta} = \frac{p_{\theta}}{mr^2}[/tex]

[tex]\dot{\phi} = \frac{p_{\phi}^2}{r^2 \sin^2{(\theta)}}[/tex]

[tex]m \ddot{r} = \frac{1}{m} \left( \frac{p_{\theta}^2}{r^3} + \frac{p_{\phi}^2}{r^3 \sin^2{(\theta)}} \right) - \frac{\partial V}{\partial r}[/tex]

[tex]m^2 \left( 2r \dot{r} \dot{\theta} + r^2 \ddot{\theta} \right) = \frac{p_{\phi}^2 \cos{(\theta)}}{r^3 \sin^3{(\theta)}}[/tex]

[tex]2 \dot{r} \sin{(\theta)} \dot{\phi} + r \left( 2 \cos{(\theta)}\dot{\theta} \dot{\phi} + \sin{(\theta)} \ddot{\phi} \right) = 0[/tex]

But how should I proceed with the last part of the problem?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Hamiltonian mechanics

**Physics Forums | Science Articles, Homework Help, Discussion**