1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Heat Exchanger

  1. Nov 7, 2016 #1
    1. The problem statement, all variables and given/known data
    Hi,
    I need someone to help me with this question. I tried to find the answer for two weeks I could not finde it. Anyone with the required experience can help!! I will be so grateful.

    Question:

    A shell-and-tube heat exchanger is to act as a condenser: saturated ethyl alcohol (ethanol) vapour at pressure of 1 atm is to be condensed on the shell side and cooling water will be used in the tubes. U-tubes will be used (giving two passes on the tube-side). They will be steel, with a total length (end-to-end of a U-tube) of 6m, 15 mm inside diameter and 17.5 mm outside diameter. Thermal conductivity of steel can be taken as 50 W/m/K.

    It is required to condense a maximum vapour flow of 5000 kg/h with no sub-cooling of the condensate. Cooling water is available with a maximum summer temperature of 25°C and with the temperature-rise (DT) limited to 30°C. A search of the literature shows that a heat transfer coefficient of around 5000 W/m2/K can be expected on the shell side for condensing ethanol. Fouling factors on the inner and outer tube surfaces may be assumed to be 0.0001 m2×K/W and 0.0002 m2×K/W respectively.

    Determine the number of tubes required, the overall heat transfer coefficient and the effectiveness of the heat exchanger.

    Fluid properties may be evaluated at mean fluid temperature. Other assumptions made must be fully justified.

    2. Relevant equations

    They are in my attempted solution

    3. The attempt at a solution

    My answer is attached as an image
     

    Attached Files:

    Last edited by a moderator: Nov 7, 2016
  2. jcsd
  3. Nov 8, 2016 #2

    BvU

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    It would help if you added units to your calculations. If you think you can condense more than 1 kg/s of ethanol with 0.01 kg/s of water it must ring all alarm bells...
     
  4. Nov 8, 2016 #3
    Yes I know but I have not coz I think my answer is wrong :(. If you have any idea only on how can i get the number of tubs I will be able to solve the rest!!
     
  5. Nov 8, 2016 #4
    Your heat capacity for water is 1000 x too high. It should be 4.2. Also, I looked up the heat of vaporization of ethanol at its atmospheric boiling point of 78.4 C, and it is 841 kJ/kg.
     
  6. Nov 8, 2016 #5
    I but Cp.w = 4.3 in my answer. So now can I assume that the in temperature of the ethanol as 78.4?
    I do not really know I am doing wrong and what I am doing right.
     
  7. Nov 8, 2016 #6
    $$\dot{Q}=(1.389)(841)=1168\ kJ/sec$$
    $$\dot{w}=\frac{1168}{(4.184)(30)}=9.31\ kg/sec$$

    The atmospheric boiling point of ethanol is 78.4 C. Didn't you look that up? How can you get the log-mean temperature difference without knowing the ethanol temperature?
     
  8. Nov 8, 2016 #7



    20161108_192017.jpg
    Can You see this is the number of tubes correct?

    And about the log-mean temperature difference, I thought I will not use it coz I do not have exit temperature of the ethanol and I can not put any temperature from my head!!
     
  9. Nov 8, 2016 #8
    No. If you didn't take into account the ethanol temperature, you could not have gotten the number of tubes correct. And you didn't even calculate the required heat transfer area.
    If the ethanol enters the shell as a saturated vapor at 1 atm., what is its temperature? If it exits the shell as a saturated liquid at the same pressure, how much has its temperature changed? So what is its exit temperature? What is the temperature difference between the water and the ethanol at the water inlet to the heat exchanger? What is the temperature difference between the water and the ethanol at the water exit from the heat exchanger?
     
  10. Nov 8, 2016 #9
    I am really grateful for the help you gave me I will try to solve it again and I will send you my work tomorrow to check if they are right. Can You please tell me which equation to use to get the required heat transfer area , the number of tubes and what is the name of the table to get the final temperature of the ethanol. So I can follow what you give me. Thanks a lot.
     
  11. Nov 8, 2016 #10
    The final temperature of the ethanol is the same as the inlet temperature, 78.4 C. Its temperature doesn't change when it condenses at constant pressure.

    Getting the number of tubes is going to be a trial-and-error procedure. You are going to have to guess a number of tubes, and then calculate the heat transfer for any one of the tubes, given the flow rate, heat load, and temperature differences. Start out by assuming, say, 10 tubes. Calculate the Reynolds number for each tube. Calculate the internal Nussult number for each tube. Get the internal heat transfer coefficient. Get the overall heat transfer coefficient. Etc.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Heat Exchanger
  1. Heat exchangers (Replies: 16)

Loading...