- #1
- 20
- 0
Homework Statement
Find a formal solution to the given initial boundary value problem.
du/dt=5(d^2u/dx^2) 0<x<1 t>0
u(0,t)=u(1,t)=0 t>0
u(x,0)=(1-x)(x^2) 0<x<1
Homework Equations
1) u(x,t) = a0/2 + sum[an*e^(-b(n pi/L)^2*t) * cos(n pi x/L)
2) Fourier series equation
The Attempt at a Solution
(1-x)(x^2) = a0/2 + sum(an * cos(n pi x) with cn = an
I calculate a0=1/6
an = 2* integral[(1-x)(x^2)(cos n pi x)dx] from 0 to 1
I'm wondering if this is write so far? And if so, how do I proceed from here? Do I just plug everything back into the general u(x,t) equation?
Thanks!