(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Hello, I am trying to simulate the heat diffusion from a laser beam striking a sample. My model/concept is very simple in that it assumes the temperature distribution will be a radially symetric sphere (i.e T=T(r,t)).

I would like to plot a temperature profile evolving through time as a function of position from the initial contact of the laser beam. I am not making a 2D/3D map of the temperature distribution but simply a position vs T plot evolve through time.

My question is that can I use the solution for the heat diffusion equation in 1D cartesian coordinates to simulate the temperature distribution from the initial point of contact or would I have to use the spherical heat diffusion equation. The reason is that the solution for 1d cartesian is readily available while in spherical coordinates obtaining the solution is a bit more difficult.

2. Relevant equations

Heat Diffusion Equations

Cartesian

dT/dt=a(d^2/dx^2), where a represents thermal diffusivity

Spherical

1/r^2(d(r^2dT/dr)dr)=1/a(dT/dt), since no dependence on theta or phi

3. The attempt at a solution

I am currently simulating the heat diffusion using the solution from the 1d cartesian coordinate heat diffusion equation but I am not sure if this is entirely correct. Also, I would imagine that my temperature profiles would be the same as long as a set my position axis to be centered at the origin (point of contact of laser beam).

1. The problem statement, all variables and given/known data

2. Relevant equations

3. The attempt at a solution

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Heating Simulation

**Physics Forums | Science Articles, Homework Help, Discussion**