1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Heisenburg Ferromagnetic Model

  1. Apr 12, 2016 #1
    1. The problem statement, all variables and given/known data
    There are several parts to this question, however I could complete these parts. It is just an equation used in the prior part to the question that is need to solve this:

    If we define \begin{equation} \sigma_{n}^{-}=\sigma_{n}^{x}+i\sigma_{n}^{y} \end{equation} and with the wavelike substitution \begin{equation} \sigma_{n}^{-}=Ae^{i(kna-wt)} \end{equation} show that one obtains the dispersion relation: \begin{equation} \hbar\omega=2JS[1-cos(ka)] \end{equation}




    2. Relevant equations
    The substitution referred to is into this formula:

    \begin{equation} \hbar \frac{d\mathbf{\sigma}_{n}}{dt}=JS\hat{z}\times (\sigma_{n-1}-2\sigma_{n}+\sigma_{n+1}) \end{equation} and we also know: \begin{equation} \sigma_{n}=(\sigma_{n}^{x},\sigma_{n}^{y},0) \end{equation}
    3. The attempt at a solution

    I thought it would simply be that we substitute in the \begin{equation} \sigma_{n}^{-}=Ae^{i(kna-wt)} \end{equation} into the equation and solve. However, that wouldn't make sense to me as the \begin{equation} \sigma_{n}^{-} \end{equation} value does not seem to be defined as a vector but the right hand side of the equation is. Even so when we do this the differential on the LHS would return a factor of 'i' and I'm not sure where that would disappear to either. It seems to me that in the marking scheme it has been fudged to make the answer correct. If not then I think I just cannot follow what has been done. I have attached the mark scheme bellow as an image.

    XgdVTB7.png
     
  2. jcsd
  3. Apr 14, 2016 #2
    A is a vector in the substitution. You are multiplying the derivative by i so when you take the derivative of the complex exponential the i(s) cancel.
     
    Last edited: Apr 14, 2016
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted