- #1

- 52

- 0

http://img56.exs.cx/my.php?loc=img56&image=scan7xv.jpg

http://img28.exs.cx/my.php?loc=img28&image=scan30fn.jpg

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter Roxy
- Start date

- #1

- 52

- 0

http://img56.exs.cx/my.php?loc=img56&image=scan7xv.jpg

http://img28.exs.cx/my.php?loc=img28&image=scan30fn.jpg

- #2

- 120

- 1

chain rule states that if [itex]f(x)=f(u(x))[/itex] then

[tex]\frac{df}{dx}=\frac{df}{du}\frac{du}{dx}[/tex]

as examples, first one

[tex]f(x)=\frac{7}{(4x^3-6x^2)^3}[/tex]

[tex]u(x)=4x^3-6x^2[/tex]

[tex]f(u)=\frac{7}{u^3}[/tex]

given that

[tex]\frac{df}{du}=-\frac{21}{u^4}[/tex]

and

[tex]\frac{du}{dx}=12x^2-12x[/tex]

then chain rule states

[tex]\frac{df}{dx}=\frac{df}{du}\frac{du}{dx}=-\frac{21}{u^4}(12x^2-12x)[/tex]

substituting [itex]u[/itex]

[tex]\frac{df}{dx}=-\frac{252}{(4x^3-6x^2)^4}(x^2-x)[/tex]

in the next one, you are almost there... all you have to do is factorize [itex](6x^2-5)^4(2x-1)^3[/itex]

the third one you can do it by calculating [itex]y=y(x)[/itex] and [itex]x=x(y)[/itex] and then differentiate ie

[tex]y(x)=\frac{x}{4}(3 \pm \sqrt{5})[/tex]

or by implicit differentiation.

The next one you already have it, the only thing you need to do is evaluate [itex]y'(2)[/itex] and [itex]y'(3)[/itex] then use the fact that

[tex]m=\frac{f'(3)-f'(2)}{3-2}[/tex]

in the last two you use the fact that [itex](f\circ g)(x)=g(f(x))[/itex] be carefull tough, you are doing it wrong in the last one (watch the root).

[tex]\frac{df}{dx}=\frac{df}{du}\frac{du}{dx}[/tex]

as examples, first one

[tex]f(x)=\frac{7}{(4x^3-6x^2)^3}[/tex]

[tex]u(x)=4x^3-6x^2[/tex]

[tex]f(u)=\frac{7}{u^3}[/tex]

given that

[tex]\frac{df}{du}=-\frac{21}{u^4}[/tex]

and

[tex]\frac{du}{dx}=12x^2-12x[/tex]

then chain rule states

[tex]\frac{df}{dx}=\frac{df}{du}\frac{du}{dx}=-\frac{21}{u^4}(12x^2-12x)[/tex]

substituting [itex]u[/itex]

[tex]\frac{df}{dx}=-\frac{252}{(4x^3-6x^2)^4}(x^2-x)[/tex]

in the next one, you are almost there... all you have to do is factorize [itex](6x^2-5)^4(2x-1)^3[/itex]

the third one you can do it by calculating [itex]y=y(x)[/itex] and [itex]x=x(y)[/itex] and then differentiate ie

[tex]y(x)=\frac{x}{4}(3 \pm \sqrt{5})[/tex]

or by implicit differentiation.

The next one you already have it, the only thing you need to do is evaluate [itex]y'(2)[/itex] and [itex]y'(3)[/itex] then use the fact that

[tex]m=\frac{f'(3)-f'(2)}{3-2}[/tex]

in the last two you use the fact that [itex](f\circ g)(x)=g(f(x))[/itex] be carefull tough, you are doing it wrong in the last one (watch the root).

Last edited:

- #3

- 52

- 0

Thaaaaank you

Share: