(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

I am working on my lab, in which I have to find eigenvalues of coupled harmonic oscillators running a) in the same direction and b) in opposite directions. Two masses, three springs.

--v^V^V^V^v--[M]--v^V^V^V^v--[M]--v^V^V^V^v-

I have to compare my calculated values to measured values. My three trials for the same-direction oscillation came back with an average frequency of 0.901 Hz. Each of the carts have mass M, 0.25 kg. I calculated the outer springs as having values of k of 35.28 Nm each, and the center spring as having a constant of 80.18 Nm.

I'm having a lot of trouble getting my measured and calculated frequencies to the same order of magnitude, let alone the same number.

I'm assuming w_{1}and w_{2}(the frequencies of each cart) should be the same, right?

2. Relevant equations

F=ma=kx

w=sqrt(k/m)

???

3. The attempt at a solution

Calculated frequency: 0.918 +/- 0.051 Hz (three trial average)

Assuming k=35.28 for the outer springs and the mass of each cart is 0.25 kg:

w = (35.28)/(0.25), except for it's not.

I really have a poor understanding of this, and I need help. I really appreciate it.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Help! Coupled harmonic oscillators.

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**