Help inequality proof

  • #1
5
0
Can anyone help me prove this inequality?
See upload~
 

Attachments

  • 不等式.bmp
    156.5 KB · Views: 443
  • #2
A complete description
Prove inequality
[itex]\begin{equation}
\int^\infty_0y^\frac{2(n-1)}{n}p(y)\,\mathrm{d}y\Big(\int^\infty_0y^\frac{1}{n}p(y)\,\mathrm{d}y\Big)^2>\int^\infty_0y^\frac{2}{n}p(y)\,\mathrm{d}y\Big(\int^\infty_0y^\frac{(n-1)}{n}p(y)\,\mathrm{d}y\Big)^2
\nonumber
\end{equation}[/itex]

[itex]p(y)>0 [/itex] and [itex]\int^\infty_0p(y)\,\mathrm{d}y=1[/itex] for any y

n is an integer and [itex]n\ge2$[/itex]
 
  • #3
When n = 2, both of those inequalities are equal, thus the inequality isn't true for n = 2.
 

Suggested for: Help inequality proof

Replies
3
Views
1K
Replies
19
Views
777
Replies
2
Views
978
Replies
4
Views
505
Replies
4
Views
956
Replies
8
Views
854
Replies
3
Views
937
Replies
2
Views
815
Back
Top