HELP! Initial Value Problem Question-Differential Equations and Euler's Method

  • #1
URGENT HELP! Initial Value Problem Question-Differential Equations and Euler's Method

Homework Statement


This is just an extension of an earlier thread. I see now that they want me to use Euler's method so it might change the way I do the problem.
The problem wants me to solve the initial value problem (for y I presume) and then use it with Euler's method to approximate the solution at t = 0.5,1,1.5,2,and 2.5.

Homework Equations


dy/dt = 5 - 3(y^(1/2)) y(0) = 2


The Attempt at a Solution


I took the equation as separable and took the integral of 1/(5-3(y^(1/2))) and found
(-10/9)ln l 5 - 3(y^(1/2)) l + (2/9)(5 - 3(y^(1/2))) = t + C. I don't see how I can solve for y from here. Did I perhaps do my integration wrong? Is there another way to solve this IVP without separation? Or perhaps I don't need to solve for y?
I know that I can solve for C using the given initial value of y but I don't see how this would help me. I know how to do Euler's method so you don't need to explain how to do that unless I have to do it in some special way to figure this problem out
Any help would be appreciated
 

Answers and Replies

Related Threads on HELP! Initial Value Problem Question-Differential Equations and Euler's Method

Replies
16
Views
3K
Replies
3
Views
923
Replies
2
Views
1K
Replies
5
Views
4K
Replies
2
Views
1K
Replies
1
Views
812
Replies
3
Views
5K
Replies
1
Views
5K
Replies
15
Views
628
Replies
9
Views
2K
Top