The power output of a particular type of solar panel varies with the angle of the sun shining on the panel. The panel outputs P (θ) watts when the angle between the sun and the panel is θ for 0 ≤ θ ≤ π. On a typical summer day in Ann Arbor, the angle between a properly mounted panel and the sun t hours after 6 a.m. is θ(t) for 0 ≤ t ≤ 14. Assume that sunrise is at 6 a.m. and sunset is 8 p.m.(adsbygoogle = window.adsbygoogle || []).push({});

(A) Calculate dP/dt using the chain rule, and give interpretations for each part of your calculation.

P(θ(t)). So, dP/dt = P(θ(t))' = P'(θ(t)) * θ'(t)

P'(θ(t)) is the average rate of change of power with respect to θ.

θ'(t) is the average rate of change of θ with respect to t.

(B) Suppose θ(t) = arcsin(t/7 -1) + π/2. Calculate θ'(t) using the equivalent expression: sin(θ(t) - π/2) = t/7 - 1

I just differentiated the equivalent function:

cos(θ(t) - π/2)*θ'(t) = 1/7

θ'(t) = 1/(7*cos(θ(t) - π/2))

(C) Suppose dP/dθ (2π/3) = 12 and θ(t) is the function in part (B). Find the change in power output between 4:30PM and 5:30PM.

This is where I'm having trouble. I would think the "change in power output" would simply be dP/dθ, since this represents the change in power with respect to θ, but I feel as though I'm incorrect here. Any help would be awesome. Thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Help me check my solutions, please!

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**